文章目录
来源:《Inventory Optimization:Models and Simulations》的Part II: Stochastic Supply Chains,主要介绍需求和提前期随机条件下的库存优化
1.Safety stocks
安全库存:创建一个缓冲库存buffer来应对不可预见的事件
- 需求:实际需求随着时间波动,与预测数据不一致
- 供应:与原定商讨的提前期相比,供应商延期了
1.1 Service Level
(1)Cycle service level 周期服务水平 α \alpha α:订单补货周期期间不缺货的概率
(2)Period service level 阶段服务水平 α p \alpha_p αp:任意时间段(一天,一周…)内不缺货的概率
(3)Client service level 客户服务水平(On Time In Full准时全额交付 OTIF):客户从库存中满足全部订单(包含多个商品)的概率
(4)Fill rate β \beta β:直接由现有库存供应的需求份额(长期)
用的比较多的是Cycle service level和Fill rate,还有其它KPI:阶段内平均延期订单,订单延期的平均时间等
1.2 Stochastic Demand
在给定服务水平目标后,可以基于平均需求来设定补货量,但是实际上每个产品的需求都是波动的,安全库存主要用于应对两类变动:
- demand variation:供应商提前期内的需求波动
- lead time variation:提前期波动下的平均需求
下面首先描述demand variation
(1)概率密度函数Probability Density Function PDF
- f χ ( x ) f_\chi(x) fχ(x):分布 χ \chi χ在值 x x x上的概率密度函数
- f N ( x ; μ , σ ) f_N(x;\mu,\sigma) fN(x;μ,σ):正态分布的PDF
- φ ( x ) \varphi(x) φ(x):标准正态分布的PDF
(2)累计分布函数Cumulative Distribution Function CDF
- F χ ( z ) = α F_\chi(z)=\alpha Fχ(z)=α α ∈ [ 0 , 1 ] \alpha\in[0,1] α∈[0,1]:分布 χ \chi χ在阈值 z z z上的累计分布函数,服务水平
- Φ ( z ) \Phi(z) Φ(z):标准正态分布的CDF
F N ( x ; μ , σ ) = Φ ( x − μ σ ) F_N(x;\mu,\sigma)=\Phi(\frac{x-\mu}{\sigma}) FN(x;μ,σ)=Φ(σx−μ)
(3)逆累计分布函数Inverse Cumulative Distribution Function(分位函数quantile function)
-
F χ − 1 ( α ) F_\chi^{-1}(\alpha) Fχ−1(α):分布 χ \chi χ在概率 α \alpha α上的逆累计分布函数
F χ − 1 ( α ) = z ⇒ F χ ( z ) = α F_\chi^{-1}(\alpha)=z \Rightarrow F_\chi(z)= \alpha Fχ−1(α)=z⇒Fχ(z)=α -
Φ − 1 ( α ) \Phi^{-1}(\alpha) Φ−1(α):标准逆累计分布
F N − 1 ( α ; 0 , 1 ) = Φ − 1 ( α ) F_N^{-1}(\alpha;0,1)=\Phi^{-1}(\alpha) FN−1(α;0,1)=Φ−1(α)
F N − 1 ( α ; μ , σ ) = μ + σ ⋅ Φ − 1 ( α ) F_N^{-1}(\alpha;\mu,\sigma)=\mu+\sigma·\Phi^{-1}(\alpha) FN−1(α;μ,σ)=μ+σ⋅Φ−1(α)
(4)正态分布的需求
假设需求是符合正态分布 N ( μ d , σ d 2 ) N(\mu_d,\sigma_d^2) N(μd,σd2),那么基于分位函数就可以计算给定服务水平下的库存量;基于累计分布函数可以计算给定库存量下能达到的服务水平
库存水平: ι = F N − 1 ( α ; μ d , σ d ) \iota=F_N^{-1}(\alpha;\mu_d,\sigma_d) ι=FN−1(α;μd,σd)
服务水平: α = F N ( ι ; μ d , σ d ) \alpha=F_N(\iota;\mu_d,\sigma_d) α=FN(ι;μd,σd)
(5)安全库存
库存=周期+安全,代表需求服从正态分布时要保持周期服务水平为 α \alpha α所需库存量
ι = C s + S s = F N − 1 ( α ; μ d , σ d ) = μ d + σ d ⋅ Φ − 1 ( α ) \iota=C_s+S_s=F_N^{-1}(\alpha;\mu_d,\sigma_d)=\mu_d+\sigma_d·\Phi^{-1}(\alpha) ι=Cs+Ss=FN−1(α;μ