解决为什么val_loss的值只有一个

按理说,val_acc的值的个数是和loss值的个数匹配,那现在只输出了一个。
如图

history = model_final.fit(
    train_generator,
    epochs=epochs,
    validation_data=validation_generator,
    validation_steps=nb_validation_samples,
    #问题就出现在了这句代码上,因为越界了
    callbacks=[checkpoint,early])

import matplotlib.pyplot as plt
loss = history.history['loss'] 
val_loss = history.history['val_loss']
print(loss, val_loss)

输出:在这里插入图片描述
理由:
validation_steps的最大值是验证集的数据/batch_size,因此把这句话删除或者设置成不要超过这个数字即可。

修改过后:

history = model_final.fit(
    train_generator,
    epochs=epochs,
    validation_data=validation_generator,
    validation_steps = int(nb_validation_samples / batch_size),
    callbacks=[checkpoint,early])

结果:
在这里插入图片描述
此时val_loss的个数=epochs=loss

⚠️:一定要看编译器给出的warnings。不要认为不是error就不看!

计算依据:
epochs:喂几次
batch:喂一次要喂的样本数
所以如果我有500个训练集,100个测试集,epochs=5,batch=20

那么steps_per_epoc=500/20=25,validation_steps=100/20=5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值