无监督学习-2-PCA

PCA算法认为降维就是一个简单的线性函数,它的输入 x x x和输出 z z z之间是线性变换,即 z = W x z = Wx z=Wx,PCA要做的就是根据 x x x w w w找出来( z z z未知)。

一维空间

为了简化问题,假设z是一维的向量,也就是把x投影到一维空间,此时w是一个行向量 z 1 = w 1 ⋅ x z_{1} = w^{1}\cdot x z1=w1x,其中 w 1 w^{1} w1的长度为1,即 ∥ w 1 ∥ 2 = 1 \left \| w^{1} \right \|_{2}=1 w12=1,此时 z 1 z_{1} z1 就是 x x x w 1 w^{1} w1方向上的投影。
w 1 w^{1} w1具体是什么样的:
我们希望选这样一个 w 1 w^{1} w1,它使得 x x x经过投影之后得到的 z 1 z_{1} z1 分布越大越好,也就是说,经过这个投影后,不同样本点之间的区别,应该仍然是可以被看得出来的,即:
希望找到一个投影的方向,它可以让投影后的方差越大越好。
不希望投影使得这些数据点挤在一起,导致点与点之间的奇异度消失。
其中,方差的计算公式: V a r ( z 1 ) = 1 N ∑ z 1 ( z 1 − z 1 ˉ ) 2 , ∥ w 1 ∥ 2 = 1 Var(z_{1}) = \frac{1}{N}\sum_{z_{1}}^{}(z_{1}-\bar{z_{1}})^{2},\left \| w^{1} \right \|_{2} = 1 Var(z1)=N1z1(z1z1ˉ)2,w12=1, z 1 ˉ \bar{z_{1}} z1ˉ z 1 z_{1} z1的平均值。
下图为所有样本点在两个不同的方向上投影之后的方差比较:
在这里插入图片描述

N维空间

现实中往往需要投影导更高维的空间。
对于 z = W x z = Wx z=Wx来说:
z 1 = w 1 ⋅ x z_{1} = w^{1}\cdot x z1=w1x,表示 x x x w 1 w^{1} w1方向上的投影。
z 2 = w 2 ⋅ x z_{2} = w^{2}\cdot x z2=w2x,表示 x x x w 2 w^{2} w2方向上的投影。
z 1 , z 2 , . . . z_{1} ,z_{2} ,... z1,z2,...结合起来就可以得到 z z z, w 1 , w 2 , . . . w^{1},w^{2},... w1,w2,...,分别是 W W W的第1,2,…个行,这里的, w i w^{i} wi必须是相互正交,此时 W W W 是正交矩阵(orthogonal matrix)在这里插入图片描述
l

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值