升余弦滤波器与无码间串扰(一)

本文探讨了基带传输系统中的码间串扰(ISI)问题,提出无码间串扰的条件,并介绍了理想低通特性和奈奎斯特带宽的概念。升余弦滤波器作为一种解决方案被引入,以减少ISI并实现更平滑的滤波器滚降特性。同时,讨论了带通系统中升余弦滤波器的应用,确保在抽样时刻无ISI。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

升余弦滤波器与无码间串扰(一)
升余弦滤波器与无码间串扰(二)
升余弦滤波器的FPGA实现


ISI

基带系统中,把发送滤波器、信道、接收滤波器的总特性看作h(t),基带的每个码元经过h(t)后码元波形会进行畸变、展宽,波形会出现拖尾,即本码元的波形不会仅局限在本码元的TB上,而是蔓延到其他码元的抽样时刻上,如果在某个码元抽样时刻上累积的ISI很大,则会影响对该码元的判决。
在这里插入图片描述

无码间串扰的基带传输特性

  • 基带传输系统模型
    在这里插入图片描述

  • 基带序列
    在这里插入图片描述

  • 接收滤波器输出
    在这里插入图片描述

  • 在t=k*TB+t0对第k个码元采样,t0是信道和接收滤波器所造成的延时
    在这里插入图片描述

  • 消除ISI的条件(先不考虑噪声)
    在这里插入图片描述
    由于an是随机变量,为了实现上求和式等于0,考虑每个码元的波形在本码元的抽样时刻上有最大值,在其他码元的抽样时刻上为0(假设t0=0)。
  • 无ISI的时域条件
    在这里插入图片描述
  • 无ISI的频域条件
    在这里插入图片描述

  • 理想低通特性
    满足无ISI的H(Ω)有很多种,有一种极限情况是理想低通特性
    在这里插入图片描述
    用带宽B=1/(2TB)的理想低通特性的基带传输系统,来传输RB=1/TB的基带信号,则在抽样时刻上不存在码间串扰
    理想低通传输特性是基带系统实现无码间串扰的最小带宽,如果要传输的基带信号的波特率是RB,则最小要用1/2RB的带宽来传输,此时对应基带系统能提供的最高频带利用率2Baud/Hz

  • 奈奎斯特带宽 fN=1/(2TB)

  • 奈奎斯特速率(无ISI的最高传输速率):2fN Baud


  • 余弦滚降特性

理想低通特性无法实现而且h(t)尾部衰减慢,振幅大,对定时要求严格,所以我们用余弦滚降特性的传输系统
在这里插入图片描述

用滚降特性代替原来陡峭的边沿。
传输系统带宽B=(1+a)fN

带通系统中的升余弦滤波

以上分析的都是基带传输系统满足升余弦特性可以实现抽样时刻上无ISI,那么带通系统中的升余弦滤波器是否有相似的特性呢?
在这里插入图片描述
根据带通系统的框图,上变频和相干解调的部分可以相互抵消,如果发送的基带信号满足在抽样时刻上无ISI,那么解调端,相干解调后得到的基带信号在抽样时刻上也无ISI。所以,在上变频之前会进行升余弦滤波,使基带信号在抽样时刻上无ISI。

### 奈奎斯特第准则概述 奈奎斯特第准则是关于无码间干扰条件下最大数据传输速率的规定。该准则指出,在理想低通信道中,为了实现无码间干扰的数据传输,最高符号率应不超过2Baud/Hz,其中带宽是以赫兹(Hz)为单位表示的信道带宽[^2]。 #### 数学表达形式 奈奎斯特第准则可以用下面的公式来表述: \[ C = 2W \log_2(N) \] 这里 \(C\) 是信道的最大数据传输速率(bit/s),\(W\) 是信道带宽(Hz),而 \(N\) 则代表每个符号所携带的信息量(比特数)。 对于二进制调制方式而言,即当 \(N=2\) 时,则有: \[ C_{max} = 2W \] 这表明在个理想的无噪声、无限长线性时不变(LTI)系统里,只要信号的波特率不高于两倍于信道的有效带宽,就可以避免ISI (Intersymbol Interference, 码间串扰), 实现可靠通信。 #### 应用实例 考虑到实际应用场景中的频谱效率需求以及减少多径效应带来的影响等因素,通常会采用升余弦滚降滤波器等技术手段优化脉冲响应特性,从而更好地满足奈奎斯特第准则的要求并提高系统的性能表现。 ```python import numpy as np from scipy import signal import matplotlib.pyplot as plt # 定义参数 baud_rate = 10e3 # 波特率设为10kHz roll_off_factor = 0.5 # 滚降因子α取值范围般介于0到1之间 symbol_time = 1 / baud_rate # 符号周期Tb sample_points_per_symbol = 8 # 每个符号内采样点数量 t = np.linspace(-4 * symbol_time, 4 * symbol_time, sample_points_per_symbol * 8) # 计算根升余弦函数 rcos = signal.rcosine(sample_points_per_symbol, roll_off_factor, 'sqrt') plt.plot(t, rcos) plt.title('Root Raised Cosine Filter Impulse Response') plt.xlabel('Time(s)') plt.ylabel('Amplitude') plt.grid(True) plt.show() ``` 上述代码展示了如何利用Python绘制个用于消除码间串扰的根升余弦滤波器冲击响应图形。通过调整`roll_off_factor`可以改变滤波器形状以适应不同场景下的具体要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据线

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值