当今社会基础技术不断发展,信息化程度不断加深,大量的数字化设备产生了海量数据,使得数据资源与日俱增。这些数据中,大部分都存储在关系型数据库中。
使用关系型数据库的同学,肯定非常清楚,在具体的结构性数据里,每个表对应的内容具体都对应着某项具体的属性或业务。比如在很多数据库演示案例中,提到的以学生信息(年级、班级)、学科的成绩、某位老师任职的班级的那几张表,到了查询具体的场景的业务时候,主要通过这几张表进行各种交叉连接。
回顾贯彻在整个风控的流程始终的策略,所涉及到的策略随着数据量、外部对接的数据源的的增加会越来越多 。如果不进行进行结构化的分类,不仅在策略的上线部署毫无逻辑,而且在后续的策略维护与调优的过程中,也会因为客群的迁徙、渠道的调整导致数据的波动,从而定位到具体原因时候无法找到问题所在。最重要的是当进行策略的迭代优化时候,也无从下手。基于以上的原因,我们参照着结构化数据,必须给策略也进行结构化的分类。
今天介绍两种最常见的结果化规则部署。
一:按照模块功能性的需求划分的结构化部署
功能需求型的策略重点就是在风险的流程架构中,能分得清具体实现的功能。
在具体的细分结构中,通常就是在一套的风险流程完整呈现,在梳理具体的规则前,我们必须理清楚整个风险的业务顺序。
将问题阐述清楚,今天我们从最简单的风险流程说起:
在以上的环节中,我们将规则按照风险的顺序先后分成以下几个结构化的模块:
1.政策准入模块
政策性的准入模块是我们在设计过程中,最需要把控的第一道关。通常我们产品的属性就觉得了,哪一类人群是我司的目标客户。
比如年龄必须是25岁到50岁,只要不符合的客群一般都是秒拒。
准入是门槛。
2.黑名单模块
准入一旦过审核,便到了匹配到我司内部黑名单的。此黑名单模块,是公司历史留档数据的黑名单客户。包括历史逾期跟历史查询黑名单类的客群。此部分的黑名单跟外部黑名单不在同个模块内。
均纳入该模块,用于评估与黑名单的关联性,直接或间接风险。该项需有贷后信息,任何不良贷后记录均需纳入风险评估。
3.反欺诈模块
可以看到到这一步,基本开始调用外部数据。在这里,我们会引进来脸部识别类OCR,设备指纹类的数据。调用外部的各种三方数据源进行风险把控,去验证申请贷款的人员是否是客户本人。
免费的先上,收费的在后。自己的数据通常都是用于第一道门槛的把控,调用外部数据再怎么也是放在后面。
4.审批策略模块
审批策略一般会考虑跟第五点的策略同时匹配,考察客户的信用风险等情况。
这里一般已经会结合客户提供的资料跟外部的资料,进行相关的综合评审,这里所用到的策略也一般非强拒类的规则。
5.第三方风险模块
这一块跟上面的模块,经常会交叉进行。信用风险的数据跟外欺诈风险的数据,在这里并没有太强的优先级别,但主要还是用于核验该信息的真实性和欺诈嫌疑。
按照功能性的划分的规则,在梳理整个风险的模块的过程,需要梳理每个模块的功能。了解具体的风险流程是规则整理成结构性框架的关键所在。
当然在上面只是一个最简单的风险架构,我们还没有实现客户分层、灰度客户的处理等等内容,在这些具体的环节中,各位读者可以根据产品、客群定位,稍微再梳理清晰些。
二.按照策略的有效程度的结果性策略
策略的有效性就是在划分策略的时候,这条规则是不是适合这个产品的属性跟内容,如果是前相关有效的规则就将其划为强拒绝,或者豁免,所以这里会按照强拒绝+准入+提醒类规则的把控进行结构性策略的划分。
---------------------- --------------------- ------------------------------------- ----------------------
十年职场生涯,这个长期混迹在风控界和科技界,摸爬滚打的大叔,曾经就职于全国最大的固网运营商平台、国内最大的ERP软件公司和一家老牌的互金公司,如果你想了解他,欢迎关注 “番茄风控大数据”一起学习一起聊!