[论文阅读] Grounded SAM: Assembling Open-World Models for Diverse Visual Tasks

免责声明: 内容不一定准确,且本人方向为分割,论文部分内容可能未被提及。

0、前言

Name:《Grounded SAM: Assembling Open-World Models for Diverse Visual Tasks》
arxiv:https://arxiv.org/pdf/2401.14159
Journals/Conferences:arxiv
code:Grounded SAM

分类:开放世界统一模型

1、相关概念

开放世界场景中,视觉感知与理解任务对于自动驾驶、机器人导航和智能安防监控等应用的进步至关重要。这些应用需要具备强大且多功能的视觉感知模型,能够解读并与开放环境交互。目前,应对开放世界视觉感知挑战的主要方法有三种:

  1. 统一模型方法:通过在多个数据集上训练模型,如 UNINEXT和 OFA,支持多种视觉任务。这一方法还包括在不同的视觉问答数据集上训练大型语言模型,从而统一任务,如 LLaVA、InstructBLIP、Qwen-VL以及其
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值