最长回文子串问题-Manacher算法深度解析
求解最长回文子串的传统方法如暴力枚举、动态规划虽然能解决问题,但在时间复杂度上存在一定局限。Manacher 算法以其巧妙的预处理方式和利用回文串对称性的优化策略,高效地解决了最长回文子串问题,将时间复杂度从传统方法的 O ( n 2 ) O(n^2) O(n2) 或 O ( n 3 ) O(n^3) O(n3) 降低到了 O ( n ) O(n) O(n)。本文我将详细介绍 Manacher 算法的原理、实现步骤、代码示例、复杂度分析以及实际应用场景,带你全面掌握这一算法。
一、最长回文子串问题概述
1.1 问题定义
回文串是指一个字符串从左往右读和从右往左读是一样的,例如 “aba”、“noon” 等。最长回文子串问题就是在给定的字符串中,找出长度最长的回文子串。如果存在多个长度相同的最长回文子串,返回其中任意一个即可。例如,对于字符串 “babad”,最长回文子串是 “bab” 或 “aba”;对于字符串 “cbbd”,最长回文子串是 “bb”。
1.2 传统解法及其局限性
-
暴力枚举法:通过两层循环枚举所有可能的子串,然后判断每个子串是否为回文串,时间复杂度为 O ( n 3 ) O(n^3) O(n3),其中 n n n 是字符串的长度。这种方法虽然简单直观,但在处理长字符串时效率极低。
-
动态规划法:利用动态规划的思想,定义状态 d p [ i ] [ j ] dp[i][j] dp[i][j] 表示字符串中从索引 i i i 到索引 j j j 的子串是否为回文串,通过状态转移方程 d p [ i ] [ j ] = ( s [ i ] = = s [ j ] ) ∧ d p [ i + 1 ] [ j − 1 ] dp[i][j] = (s[i] == s[j]) \land dp[i + 1][j - 1] dp[i][j]=(s[i]==s[j])∧dp[i+1][j−1] 来计算,时间复杂度可以优化到 O ( n 2 ) O(n^2) O(n2),空间复杂度也为 O ( n 2 ) O(n^2) O(n2)。虽然有所改进,但在效率上仍有提升空间。
二、Manacher 算法核心原理
2.1 算法设计思想
Manacher 算法的核心思想是通过对字符串进行预处理,将奇数长度和偶数长度的回文串统一处理,并利用已经计算出的回文子串信息,减少重复计算,从而将时间复杂度降低到 O ( n ) O(n) O(n)。
2.2 字符串预处理
为了将奇数长度和偶数长度的回文串统一处理,Manacher 算法对原始字符串进行预处理。具体做法是在每个字符的两边都插入一个特殊字符(通常用 ‘#’),并且在字符串的开头和结尾再分别插入一个不同的特殊字符(例如 ‘$’ 和 ‘@’),以确保边界情况的正确处理。例如,对于字符串 “aba”,预处理后变为 “$#a#b#a#@”;对于字符串"abba",预处理后变为"$#a#b#b#a#@"。
经过预处理后,所有的回文子串长度都变为奇数,这样就可以用统一的方式来处理不同长度的回文串,简化了算法的实现。
2.3 辅助数组与回文半径
Manacher 算法引入一个辅助数组 p [ ] p[] p[],其中 p [ i ] p[i] p[i] 表示以字符 s [ i ] s[i] s[i] 为中心的最长回文子串的半径(包括字符 s [ i ] s[i] s[i] 本身)。例如,对于预处理后的字符串 "KaTeX parse error: Expected 'EOF', got '#' at position 1: #̲a#b#b#a#@",p 数组的值可能为 [ 1 , 2 , 1 , 2 , 5 , 2 , 1 , 2 , 1 ] ,其中 数组的值可能为 [1, 2, 1, 2, 5, 2, 1, 2, 1],其中 数组的值可能为[1,2,1,2,5,2,1,2,1],其中p [4] = 5$ 表示以字符 ‘#’(位于原始字符串 “abba” 的中间位置)为中心的最长回文子串的半径为 5,对应的回文子串为 “#b#b#”,去除特殊字符后就是原始字符串中的 “bb”。
2.4 利用对称性优化计算
Manacher 算法的关键优化在于利用已经计算出的回文子串的对称性。假设在计算 p [ i ] p[i] p[i] 时,已经计算出了 p [ 0 ] p[0] p[0] 到 p [ i − 1 ] p[i - 1] p[i−1] 的值,并且已知在 i i i 之前存在一个回文子串,其中心为 i d id id,半径为 m x mx mx(即 m x = i d + p [ i d ] mx = id + p[id] mx=id+p[id],表示该回文子串的右边界)。
-
情况一::此时, i i i 关于 i d id id 的对称点为 j = 2 ∗ i d − i j = 2 * id - i j=2∗id−i。根据回文串的对称性, p [ i ] p[i] p[i] 至少等于 m i n ( p [ j ] , m x − i ) min(p[j], mx - i) min(p[j],mx−i)。这是因为如果 p [ j ] p[j] p[j] 小于 m x − i mx - i mx−i,那么以 i i i 为中心的回文子串完全包含在以 i d id id 为中心的回文子串内,所以 p [ i ] p[i] p[i] 可以直接取 p [ j ] p[j] p[j];如果 p [ j ] p[j] p[j] 大于等于 m x − i mx - i mx−i,那么以 i i i 为中心的回文子串最多只能扩展到 m x mx mx 的位置,所以 p [ i ] p[i] p[i] 取 m x − i mx - i mx−i。
-
情况二::此时无法利用对称性,只能从 i i i 为中心,向两边逐个字符进行比较,计算 p [ i ] p[i] p[i] 的值。
三、Manacher 算法实现步骤
-
字符串预处理:在原始字符串的每个字符两边插入特殊字符 ‘#’,并在开头和结尾插入其他特殊字符,得到预处理后的字符串 s s s。
-
初始化辅助数组:创建一个与预处理后字符串长度相同的数组 p p p,并初始化为 0。
-
初始化变量:设置变量 i d = 0 id = 0 id=0 表示当前已知的回文子串中心, m x = 0 mx = 0 mx=0 表示当前已知的回文子串的右边界。
-
遍历字符串计算 **** **** 数组:
-
对于每个字符 s [ i ] s[i] s[i],如果 i < m x i < mx i<mx,根据对称性计算 p [ i ] p[i] p[i] 的初始值;否则将 p [ i ] p[i] p[i] 初始化为 1。
-
以 s [ i ] s[i] s[i] 为中心,向两边扩展,比较字符是否相同,更新 p [ i ] p[i] p[i] 的值。
-
如果以 i i i 为中心的回文子串的右边界超过了当前的 m x mx mx,更新 i d = i id = i id=i 和 m x = i + p [ i ] mx = i + p[i] mx=i+p[i]。
- 找出最长回文子串:遍历
p
p
p 数组,找到最大的
p
[
i
]
p[i]
p[i] 值,其对应的回文子串就是原始字符串中的最长回文子串。根据
p
[
i
]
p[i]
p[i] 和
i
i
i 的值,可以计算出原始字符串中最长回文子串的起始位置和长度。
四、Manacher 算法代码实现
4.1 Python 实现
def manacher(s):
# 字符串预处理
s = '$#' + '#'.join(s) + '#@'
p = [0] * len(s)
id, mx = 0, 0
for i in range(1, len(s) - 1):
if i < mx:
p[i] = min(p[2 * id - i], mx - i)
else:
p[i] = 1
# 向两边扩展
while s[i - p[i]] == s[i + p[i]]:
p[i] += 1
# 更新id和mx
if i + p[i] > mx:
id, mx = i, i + p[i]
# 找出最长回文子串
max_len, center_index = 0, 0
for i in range(1, len(s) - 1):
if p[i] - 1 > max_len:
max_len = p[i] - 1
center_index = i
start = (center_index - max_len) // 2
return s[start * 2 + 1: start * 2 + 1 + max_len]
# 测试
s = "babad"
print(manacher(s))
4.2 Java 实现
public class ManacherAlgorithm {
public static String manacher(String s) {
// 字符串预处理
StringBuilder sb = new StringBuilder();
sb.append("$#");
for (char c : s.toCharArray()) {
sb.append(c).append("#");
}
sb.append("@");
s = sb.toString();
int[] p = new int[s.length()];
int id = 0, mx = 0;
for (int i = 1; i < s.length() - 1; i++) {
if (i < mx) {
p[i] = Math.min(p[2 * id - i], mx - i);
} else {
p[i] = 1;
}
// 向两边扩展
while (s.charAt(i - p[i]) == s.charAt(i + p[i])) {
p[i]++;
}
// 更新id和mx
if (i + p[i] > mx) {
id = i;
mx = i + p[i];
}
}
// 找出最长回文子串
int maxLen = 0, centerIndex = 0;
for (int i = 1; i < s.length() - 1; i++) {
if (p[i] - 1 > maxLen) {
maxLen = p[i] - 1;
centerIndex = i;
}
}
int start = (centerIndex - maxLen) / 2;
return s.substring(start * 2 + 1, start * 2 + 1 + maxLen);
}
public static void main(String[] args) {
String s = "babad";
System.out.println(manacher(s));
}
}
4.3 C++ 实现
#include <iostream>
#include <string>
using namespace std;
string manacher(string s) {
// 字符串预处理
string t = "$#";
for (char c : s) {
t += c;
t += '#';
}
t += '@';
int n = t.size();
int p[n];
int id = 0, mx = 0;
for (int i = 1; i < n - 1; i++) {
if (i < mx) {
p[i] = min(p[2 * id - i], mx - i);
} else {
p[i] = 1;
}
// 向两边扩展
while (t[i - p[i]] == t[i + p[i]]) {
p[i]++;
}
// 更新id和mx
if (i + p[i] > mx) {
id = i;
mx = i + p[i];
}
}
// 找出最长回文子串
int maxLen = 0, centerIndex = 0;
for (int i = 1; i < n - 1; i++) {
if (p[i] - 1 > maxLen) {
maxLen = p[i] - 1;
centerIndex = i;
}
}
int start = (centerIndex - maxLen) / 2;
return s.substr(start, maxLen);
}
int main() {
string s = "babad";
cout << manacher(s) << endl;
return 0;
}
五、复杂度分析
5.1 时间复杂度
Manacher 算法通过一次遍历预处理后的字符串来计算辅助数组 p p p,在遍历过程中,对于每个字符,虽然存在扩展的操作,但由于每个字符最多被访问两次(一次是计算初始值,一次是扩展),所以整个算法的时间复杂度为 O ( n ) O(n) O(n),其中 n n n 是预处理后字符串的长度,由于预处理后的字符串长度与原始字符串长度是线性关系,所以对于原始字符串,时间复杂度同样为 O ( n ) O(n) O(n)。相较于暴力枚举法和动态规划法,Manacher 算法在时间效率上有了显著提升。
5.2 空间复杂度
算法主要使用了辅助数组 p p p 和一些额外的变量,辅助数组的长度与预处理后字符串的长度相同,所以空间复杂度为 O ( n ) O(n) O(n),其中 n n n 是预处理后字符串的长度。
That’s all, thanks for reading!
觉得有用就点个赞
、收进收藏
夹吧!关注
我,获取更多干货~