小证明

证明一个不那么直观的结论:

\[S_{n}(k-t)=\binom{n+k-t}{k-t} \]

其中 \(S_n(k-t)\) 为一个长度为 \(k-t\) 的、初始值全为 \(1\) 的序列 \(A\)\(n\) 维前缀和的第 \(k-t\) 项。

不妨把序列 \(A\) 看成一个多项式:

\[f(x)=1+x+x^2+....=\sum_{i=0}^{\infin} x^i \]

求它的前缀和,也就是把它乘个 \(G(x)=\sum_{i=0}^{\infin}x^i\) 的多项式。结合生成函数思想,我们初始要求的 \(S_n(k-t)\) 也就是函数

\[h(x)=f(x)\times G^{n}(x) \]

的第 \(k-t\) 项。由于 \(f(x)\)\(G(x)\) 是一致的,于是 \(h(x)\) 也可以写成

\[h(x)=\frac{1}{(1-x)^{n+1}}=(1-x)^{-(n+1)} \]

利用广义二项式定理展开,得到

\[h(x)=\sum_{i=0}^{\infin} \binom{n+i}{i}x^i \]

他的第 \(k-t\) 项就是 \(\binom{n+k-t}{k-t}\)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值