Mechine Learning——Logistic

Logistic回归一种二分类算法,它利用的是Sigmoid函数阈值在[0,1]这个特性。Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。其实,Logistic本质上是一个基于条件概率的判别模型。
逻辑回归和线性回归都是根据已有数据作出一条线,线性回归的预测值是反映在所作线上,讲对应预测数据代入到所作线上求出该数据的预测值。而逻辑回归是把所得线当作一个分界线,线的两边作为两种分类
这个算法所依赖的数学原理是概率论中的最大似然估计原理。
因为是二分类问题,只有两种情况,则用1,0代替并且他们是对立事件
这里提及一个sigmoid函数

def sigmoid(inX):
    return 1.0/(1+exp(-inX))

在这里插入图片描述
他是用来预测概率,当sigmoid>0.5,则预测值为1,若sigmoid<0.5,则预测值为0.由于二者是对立的,所以我只需要看某一个概率即可。
预测函数不止sigmoid一个,tahn,relu也是,和sigmoid具有同样作用。
此外,我们定义:

g(z)即sigmoid函数
在这里插入图片描述
这里θ是个拟合系数的向量
θTX的含义是拟合系数与特征向量乘积,即得到拟合以后的数据,把它输入到预测函数h(x)中,若h(x)>0.5,则为1代表的类型;若h(x)<0.5,则为0预测的数据。

def classifyVector(inX, weights):
    prob = sigmoid(sum(inX*weights))
    if prob > 0.5: return 1.0
    else: return 0.0

weights就是他的拟合系数

我们用y表示类型0,1,则
P(y=1|x,θ)=h(x)
P(y=0|x,θ)=1-h(x)
把上述两个式子可化为一个式子
在这里插入图片描述
由于指数形式不好处理,所以求对数得到
在这里插入图片描述
把他当作关于θ的函数,由于θ即为拟合系数的向量,x=训练集中的数据,y=0,1.
我们希望我们的拟合系数的向量θ能够使得J(θ)的值越大越好,因为J(θ)越大即课间接说明θ的拟合程度越高,我们要的拟合系数越符合要求。
在这里插入图片描述
上述就是梯度的公式,数学分析高等数学应该都讲过,很好理解,但由于他不是对一个数字进行梯度分析,而是对一个拟合向量进行变换,其实都一样但矩阵运算容易把思路带乱

def gradAscent(dataMatIn, classLabels):
    dataMatrix = mat(dataMatIn)             #convert to NumPy matrix
    labelMat = mat(classLabels).transpose() #convert to NumPy matrix
    m,n = shape(dataMatrix)
    alpha = 0.001
    maxCycles = 500
    weights = ones((n,1))
    for k in range(maxCycles):              #heavy on matrix operations
        h = sigmoid(dataMatrix*weights)     #matrix mult
        error = (labelMat - h)              #vector subtraction
        weights = weights + alpha * dataMatrix.transpose()* error #matrix mult
    return weights

这里把weights初始化为全一的拟合系数,然后对weights一直进行梯度分析,以alpha=0.001作为幅度一步一步的把weights变成最优解
其中对于for循环里面的代码进行一次分析,讲这一行代码整合后即

weights+=alpha*dataMatrix.transpose()*(labelMat-sigmoid(dataMatrix*weights))

即dataMatrix.transpose()(labelMat-sigmoid(dataMatrixweights))为梯度
推导:
已知
在这里插入图片描述
刚才提到过J(θ)的值越大越好,所以我们即要求J(θ)的导数
那么现在开始求解J(θ)对θ的偏导,求解如下(数学推导):
在这里插入图片描述
分开一个一个求
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
综上所述,
在这里插入图片描述
由于θ是个向量,所以上面这个求导结果是θ的每一个元素的导数。
因此对拟合系数的每个元素的梯度上升迭代公式为
在这里插入图片描述

def gradAscent(dataMatIn, classLabels):
    dataMatrix = mat(dataMatIn)             #convert to NumPy matrix
    labelMat = mat(classLabels).transpose() #convert to NumPy matrix
    m,n = shape(dataMatrix)
    alpha = 0.001
    maxCycles = 500
    weights = ones((n,1))
    for k in range(maxCycles):              #heavy on matrix operations
        h = sigmoid(dataMatrix*weights)     #matrix mult
        error = (labelMat - h)              #vector subtraction
        weights = weights + alpha * dataMatrix.transpose()* error #matrix mult
    return weights

现在我再把刚才的函数拿出来,再看一看for循环中的那个语句

weights+=alpha*dataMatrix.transpose()*(labelMat-sigmoid(dataMatrix*weights))

(labelMat-sigmoid(dataMatrixweights))是一个向量,其中每个元素代表了
在这里插入图片描述
而dataMatrix.transpose()是个矩阵,他的第j行向量的i个元素为第i个样本的第j个特征,即在这里插入图片描述
而两个矩阵相乘,由于(labelMat-sigmoid(dataMatrix
weights))是一个列向量,所以二者相乘必得到另一个列向量。
则此列向量即为经过一次alpha步后的拟合向量θ,而对于θ中的第j个元素
为dataMatrix.transpose()的第j个行向量(即所有样本第j个特征的集合)与(第i个样本标签-第i个样品的拟合后的第j个特征的预测值)
在这里插入图片描述

def stocGradAscent0(dataMatrix, classLabels):
    m,n = shape(dataMatrix)
    alpha = 0.01
    weights = ones(n)   #initialize to all ones
    for i in range(m):
        h = sigmoid(sum(dataMatrix[i]*weights))
        error = classLabels[i] - h
        weights = weights + alpha * error * dataMatrix[i]
    return weights

这是随机梯度上升法,随机挑选一个样本进行梯度分析然后进行梯度的趋近

def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    m,n = shape(dataMatrix)
    weights = ones(n)   #initialize to all ones
    for j in range(numIter):
        dataIndex = range(m)
        for i in range(m):
            alpha = 4/(1.0+j+i)+0.0001    #apha decreases with iteration, does not 
            randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant
            h = sigmoid(sum(dataMatrix[randIndex]*weights))
            error = classLabels[randIndex] - h
            weights = weights + alpha * error * dataMatrix[randIndex]
            del(dataIndex[randIndex])
    return weights

这是改进后的随机梯度上升算法,不再随机一个样本,二十随机几个样本,小批量实现梯度上升算法。

def plotBestFit(weights):
    import matplotlib.pyplot as plt
    dataMat,labelMat=loadDataSet()
    dataArr = array(dataMat)
    n = shape(dataArr)[0] 
    xcord1 = []; ycord1 = []
    xcord2 = []; ycord2 = []
    for i in range(n):
        if int(labelMat[i])== 1:
            xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    x = arange(-3.0, 3.0, 0.1)
    y = (-weights[0]-weights[1]*x)/weights[2]
    ax.plot(x, y)
    plt.xlabel('X1'); plt.ylabel('X2');
    plt.show()

这是把算法可视化的过程
下面是处理具体问题的时候的代码
这个会涉及到数据的缺失问题,大家要注意一下

def classifyVector(inX, weights):
    prob = sigmoid(sum(inX*weights))
    if prob > 0.5: return 1.0
    else: return 0.0

def colicTest():
    frTrain = open('horseColicTraining.txt'); frTest = open('horseColicTest.txt')
    trainingSet = []; trainingLabels = []
    for line in frTrain.readlines():
        currLine = line.strip().split('\t')
        lineArr =[]
        for i in range(21):
            lineArr.append(float(currLine[i]))
        trainingSet.append(lineArr)
        trainingLabels.append(float(currLine[21]))
    trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 1000)
    errorCount = 0; numTestVec = 0.0
    for line in frTest.readlines():
        numTestVec += 1.0
        currLine = line.strip().split('\t')
        lineArr =[]
        for i in range(21):
            lineArr.append(float(currLine[i]))
        if int(classifyVector(array(lineArr), trainWeights))!= int(currLine[21]):
            errorCount += 1
    errorRate = (float(errorCount)/numTestVec)
    print ("the error rate of this test is: %f" % errorRate)
    return errorRate

def multiTest():
    numTests = 10; errorSum=0.0
    for k in range(numTests):
        errorSum += colicTest()
    print ("after %d iterations the average error rate is: %f" % (numTests, errorSum/float(numTests)))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值