Logistic回归一种二分类算法,它利用的是Sigmoid函数阈值在[0,1]这个特性。Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。其实,Logistic本质上是一个基于条件概率的判别模型。
逻辑回归和线性回归都是根据已有数据作出一条线,线性回归的预测值是反映在所作线上,讲对应预测数据代入到所作线上求出该数据的预测值。而逻辑回归是把所得线当作一个分界线,线的两边作为两种分类
这个算法所依赖的数学原理是概率论中的最大似然估计原理。
因为是二分类问题,只有两种情况,则用1,0代替并且他们是对立事件
这里提及一个sigmoid函数
def sigmoid(inX):
return 1.0/(1+exp(-inX))
他是用来预测概率,当sigmoid>0.5,则预测值为1,若sigmoid<0.5,则预测值为0.由于二者是对立的,所以我只需要看某一个概率即可。
预测函数不止sigmoid一个,tahn,relu也是,和sigmoid具有同样作用。
此外,我们定义:
这里θ是个拟合系数的向量
θTX的含义是拟合系数与特征向量乘积,即得到拟合以后的数据,把它输入到预测函数h(x)中,若h(x)>0.5,则为1代表的类型;若h(x)<0.5,则为0预测的数据。
def classifyVector(inX, weights):
prob = sigmoid(sum(inX*weights))
if prob > 0.5: return 1.0
else: return 0.0
weights就是他的拟合系数
我们用y表示类型0,1,则
P(y=1|x,θ)=h(x)
P(y=0|x,θ)=1-h(x)
把上述两个式子可化为一个式子
由于指数形式不好处理,所以求对数得到
把他当作关于θ的函数,由于θ即为拟合系数的向量,x=训练集中的数据,y=0,1.
我们希望我们的拟合系数的向量θ能够使得J(θ)的值越大越好,因为J(θ)越大即课间接说明θ的拟合程度越高,我们要的拟合系数越符合要求。
上述就是梯度的公式,数学分析高等数学应该都讲过,很好理解,但由于他不是对一个数字进行梯度分析,而是对一个拟合向量进行变换,其实都一样但矩阵运算容易把思路带乱
def gradAscent(dataMatIn, classLabels):
dataMatrix = mat(dataMatIn) #convert to NumPy matrix
labelMat = mat(classLabels).transpose() #convert to NumPy matrix
m,n = shape(dataMatrix)
alpha = 0.001
maxCycles = 500
weights = ones((n,1))
for k in range(maxCycles): #heavy on matrix operations
h = sigmoid(dataMatrix*weights) #matrix mult
error = (labelMat - h) #vector subtraction
weights = weights + alpha * dataMatrix.transpose()* error #matrix mult
return weights
这里把weights初始化为全一的拟合系数,然后对weights一直进行梯度分析,以alpha=0.001作为幅度一步一步的把weights变成最优解
其中对于for循环里面的代码进行一次分析,讲这一行代码整合后即
weights+=alpha*dataMatrix.transpose()*(labelMat-sigmoid(dataMatrix*weights))
即dataMatrix.transpose()(labelMat-sigmoid(dataMatrixweights))为梯度
推导:
已知
刚才提到过J(θ)的值越大越好,所以我们即要求J(θ)的导数
那么现在开始求解J(θ)对θ的偏导,求解如下(数学推导):
分开一个一个求
综上所述,
由于θ是个向量,所以上面这个求导结果是θ的每一个元素的导数。
因此对拟合系数的每个元素的梯度上升迭代公式为
def gradAscent(dataMatIn, classLabels):
dataMatrix = mat(dataMatIn) #convert to NumPy matrix
labelMat = mat(classLabels).transpose() #convert to NumPy matrix
m,n = shape(dataMatrix)
alpha = 0.001
maxCycles = 500
weights = ones((n,1))
for k in range(maxCycles): #heavy on matrix operations
h = sigmoid(dataMatrix*weights) #matrix mult
error = (labelMat - h) #vector subtraction
weights = weights + alpha * dataMatrix.transpose()* error #matrix mult
return weights
现在我再把刚才的函数拿出来,再看一看for循环中的那个语句
weights+=alpha*dataMatrix.transpose()*(labelMat-sigmoid(dataMatrix*weights))
(labelMat-sigmoid(dataMatrixweights))是一个向量,其中每个元素代表了
而dataMatrix.transpose()是个矩阵,他的第j行向量的i个元素为第i个样本的第j个特征,即
而两个矩阵相乘,由于(labelMat-sigmoid(dataMatrixweights))是一个列向量,所以二者相乘必得到另一个列向量。
则此列向量即为经过一次alpha步后的拟合向量θ,而对于θ中的第j个元素
为dataMatrix.transpose()的第j个行向量(即所有样本第j个特征的集合)与(第i个样本标签-第i个样品的拟合后的第j个特征的预测值)
def stocGradAscent0(dataMatrix, classLabels):
m,n = shape(dataMatrix)
alpha = 0.01
weights = ones(n) #initialize to all ones
for i in range(m):
h = sigmoid(sum(dataMatrix[i]*weights))
error = classLabels[i] - h
weights = weights + alpha * error * dataMatrix[i]
return weights
这是随机梯度上升法,随机挑选一个样本进行梯度分析然后进行梯度的趋近
def stocGradAscent1(dataMatrix, classLabels, numIter=150):
m,n = shape(dataMatrix)
weights = ones(n) #initialize to all ones
for j in range(numIter):
dataIndex = range(m)
for i in range(m):
alpha = 4/(1.0+j+i)+0.0001 #apha decreases with iteration, does not
randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant
h = sigmoid(sum(dataMatrix[randIndex]*weights))
error = classLabels[randIndex] - h
weights = weights + alpha * error * dataMatrix[randIndex]
del(dataIndex[randIndex])
return weights
这是改进后的随机梯度上升算法,不再随机一个样本,二十随机几个样本,小批量实现梯度上升算法。
def plotBestFit(weights):
import matplotlib.pyplot as plt
dataMat,labelMat=loadDataSet()
dataArr = array(dataMat)
n = shape(dataArr)[0]
xcord1 = []; ycord1 = []
xcord2 = []; ycord2 = []
for i in range(n):
if int(labelMat[i])== 1:
xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
ax.scatter(xcord2, ycord2, s=30, c='green')
x = arange(-3.0, 3.0, 0.1)
y = (-weights[0]-weights[1]*x)/weights[2]
ax.plot(x, y)
plt.xlabel('X1'); plt.ylabel('X2');
plt.show()
这是把算法可视化的过程
下面是处理具体问题的时候的代码
这个会涉及到数据的缺失问题,大家要注意一下
def classifyVector(inX, weights):
prob = sigmoid(sum(inX*weights))
if prob > 0.5: return 1.0
else: return 0.0
def colicTest():
frTrain = open('horseColicTraining.txt'); frTest = open('horseColicTest.txt')
trainingSet = []; trainingLabels = []
for line in frTrain.readlines():
currLine = line.strip().split('\t')
lineArr =[]
for i in range(21):
lineArr.append(float(currLine[i]))
trainingSet.append(lineArr)
trainingLabels.append(float(currLine[21]))
trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 1000)
errorCount = 0; numTestVec = 0.0
for line in frTest.readlines():
numTestVec += 1.0
currLine = line.strip().split('\t')
lineArr =[]
for i in range(21):
lineArr.append(float(currLine[i]))
if int(classifyVector(array(lineArr), trainWeights))!= int(currLine[21]):
errorCount += 1
errorRate = (float(errorCount)/numTestVec)
print ("the error rate of this test is: %f" % errorRate)
return errorRate
def multiTest():
numTests = 10; errorSum=0.0
for k in range(numTests):
errorSum += colicTest()
print ("after %d iterations the average error rate is: %f" % (numTests, errorSum/float(numTests)))