基于主动学习和克里金插值的空气质量推测

本文提出了一种基于主动学习和克里金插值的空气质量推测算法。通过克里金插值进行初步推测,结合主动学习策略选择最具不确定性位置进行采样,建立主动学习插值模型,以最少的监测点提高空气质量推测准确性。实验表明,该方法能有效提升推测精度,减少监测成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于主动学习和克里金插值的空气质量推测

常慧娟於志文於志勇安琦郭斌

西北工业大学计算机学院,陕西 西安 710072 福州大学数学与计算机科学学院,福建 福州 350108 

 

摘要空气质量监测站仅能在少数位置部署,故而无法获取城市中每个位置的空气质量信息。提出了一种基于主动学习和克里金插值的空气质量推测算法。该算法首先选用克里金插值作为基础的空气质量推测算法,然后结合主动学习的思想,对置信度最大的位置进行优先采样,最终建立基于主动学习的插值模型,通过最少的监测点对空气质量进行采样,最大限度地提升推测其他位置空气质量的准确度。研究结果表明,所提算法能够有效地提高空气质量推测精度,同时减少监测站采样数量,降低部署成本。

关键词克里金插值 ; 空气质量指数 ; 主动学习 ; 空间插值 ; 空气质量推测

640?wx_fmt=jpeg

论文引用格式:

常慧娟, 於志文, 於志勇, 安琦, 郭斌. 基于主动学习和克里金插值的空气质量推测. 大数据[J], 2018, 4(6):54-64CHANG H J, YU Z W, YU Z Y, AN Q, GUO B. Air quality estimation based on active learning and Kriging interpolation. Big data research[J],2018,4(6):54-64640?wx_fmt=jpeg

1 引言

随着社会经济的发展和人民生活水平的提高,空气质量越来越被大家所关注。空气一直是维护人类及生物生存的保护膜,对人类及生物生存起着重要作用。但随着工业及交通运输业的不断发展,大量的有害物质被排放到空气中,空气质量每况愈下,由其导致的酸雨和全球变暖问题都在破坏着人类的自然环境和生态系统。在循环经济、绿色经济、经济与环境可持续发展的趋势下,为了了解空气污染变化趋势,掌握及时、准确、全面的空气质量信息,需要对空气质量进行精准预测,准确获取城市中每个位置的空气质量成为一项必不可少的研究工作,可为监控空气污染状况、制定治理措施提供依据。但由于空气质量监测站需占用大量空间且成本高昂,仅能在少数位置部署,因此选取哪些位置对空气质量进行采样,从而最大限度地推测其他位置的空气质量,是一项具有挑战的工作。基于空气质量数据不足的情况,本文选用克里金(Kriging)插值并结合主动学习的思想,提出用于空气质量指数 推测的Kriging模型。

目前,对同一地区的未来某时的空 气质量指数以及污染物浓度预测已经有很多研究工作了,然而对同一时刻,指定地区的空气质量推测还没有很好的探索。空气质量具有空间自相关性,因此一个简单的方法是使用Kriging模型进行空间插值预测。在用Kriging方法建模的过程中,标记样本数量的多少直接关系到模型的精度,当标记样本较少时,通常难以构建可靠的模型。在传统的监督学习环境中,应该提供大量的训练样例来构建具有良好泛化能力的模型。需要指出的是,这些训练样例应该加上标签,而在许多实际的机器学习和数据挖掘应用中,通常只有少数标记训练示例是可用的,在实际应用中,空气质量监测站占用了大量的空间且成本高昂,对于大多数位置而言,并没有任何空气质量数据。为了提高预测精度,提出一种基于主动学习的Kriging(active-learning Kriging,ALK)插值方法,用于推测给定的任意位置的空气质量指数。本文的主要工作如下:

● 提高对给定的任意位置的空气质量指数预测的准确度;

● 提出了一个基于主动学习的Kriging插值模型,该模型通过选取少数位置对空气质量进行采样,能最大限度地提升推测其他位置的空气质量的准确度;

● 使用我国43个城市的数据来评估提出的模型,实验结果验证了本文预测框架的通用性和有效性,并提高了预测精度。


2 相关工作

目前,一些关于分析和预测空气质量的研究工作已达到对大气环境质量进行预测预警的作用。这些研究工作采用了不同的方法对空气质量进行预测。在环境科学方面,现有的空气质量预测方法通常基于经典的离散模型,如高斯烟羽(Gaussian plume)模型、与监管街道峡谷相关的模型(operational street canyon模型)和计算流体动力学(computational fluid dynamics)模型。近年来,一些统计模型(如线性回归模型、回归树模型和神经网络模型)已被应用于大气科学,实时预测空气质量。宋宇辰等人和祝翠玲等人运用时间序列法和反向传播(back propagation,BP)神经网络法建立模型,预测空气质量,对SO2、NO2和可吸入颗粒物的浓度值进行预测与分析;郑宇等人使用数据驱动的方法预测未来48 h的空气质量监测站的读数,该数据驱动的方法考虑了当前的气象数据、天气预报、监测站空气质量数据以及该监测站周围几百公里其他监测站的空气质量数据;林开春等人和孟倩提出基于随机森林的空气质量指数预测模型和空气质量等级分类预测方法。苏静等人和杨锦伟等人应用灰色

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值