【DeepSeek】Mac m1电脑部署DeepSeek

一、电脑配置

个人电脑配置
在这里插入图片描述

二、安装ollama

简介:Ollama 是一个强大的开源框架,是一个为本地运行大型语言模型而设计的工具,它帮助用户快速在本地运行大模型,通过简单的安装指令,可以让用户执行一条命令就在本地运行开源大型语言模型。
ollama官网,根据自己电脑的类型选择对应的下载安装程序,比如我这里选择 macos:
在这里插入图片描述
下载成功后,直接安装。
如何判断是否安装成功?
打开一个命令行终端,输入命令:ollama -v,显示版本信息,表示安装成功。
在这里插入图片描述

三、选择合适的模型

点击ollama–>models选项,可以查看支持运行的模型。

### MacBook 上部署 DeepSeek 教程 #### 准备工作 为了确保顺利部署 DeepSeek 模型,在开始之前需确认 Mac 已经安装了必要的开发工具,比如 Xcode Command Line Tools 和 Homebrew。 #### 安装 Ollama 由于 DeepSeek 的本地化部署依赖于 Ollama 平台的支持,因此首要任务是从官方渠道下载并安装最新版的 Ollama 应用程序[^2]。这一步对于后续操作至关重要,因为 Ollama 提供了一个易于使用的界面来管理和运行各种大型语言模型,包括 DeepSeek。 #### 创建适合的 Python 环境 考虑到 macOS 自带的 Python 版本可能不适合某些特定需求的应用场景,推荐采用 `pyenv` 来创建独立的工作环境。具体做法如下: 1. 利用 Homebrew 安装 `pyenv`: `brew install pyenv` 2. 使用 `pyenv` 安装所需的 Python 版本, 如:`pyenv install 3.x.x` 3. 推荐使用虚拟环境而非设置全局 Python 版本来避免潜在冲突;可以通过命令 `python -m venv myenv` 创建一个新的虚拟环境,并激活它以便继续下一步的操作[^3]. #### 获取并配置 DeepSeek 模型 完成上述准备工作之后,接下来就是获取目标模型文件——即 DeepSeek 模型本身。按照官方指南指示,通过 Ollama 或其他途径获得适用于 MacOS 的预训练模型包。解压后将其放置在一个合适的位置准备加载到应用程序中[^1]。 #### 启动与测试 一切就绪后,打开终端进入刚才建立好的虚拟环境中执行启动脚本或是直接调用 API 测试新安装的服务是否正常运作。如果一切顺利的话,则说明已经成功完成了 DeepSeekMacBook 上的本地部署过程。 #### 增强用户体验 为了让用户能够更便捷地利用这个强大的 AI 助手功能,可以考虑集成 Open WebUI 组件以提供图形化的交互方式,从而简化用户的输入流程并提高效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值