如何用自然语言查询股票信息?——基于 LangGraph Agent 的实战开发

在当今数字化时代,自然语言处理(NLP)技术已经被广泛应用于金融领域,帮助用户更便捷地获取信息。今天,我们将通过一个实战项目,介绍如何利用 LangGraph Agent 实现股票信息的自然语言查询。我们将从股票信息的获取、工具的设计,到最终的代码实现,一步步展开。

一、股票信息的获取

在金融领域,获取实时股票信息是开发相关应用的基础。我们可以通过调用第三方数据接口来实现这一目标。在本实战中,我们选择了东方财富网提供的接口,用于获取创业板的实时股票数据。

1.1 数据接口介绍

东方财富网提供了丰富的股票数据接口,其中 stock_cy_a_spot_em 接口可以抓取创业板的实时数据。通过调用该接口,我们可以获取包括股票代码、名称、当前价格、涨跌幅等在内的详细信息。以下是接口返回的数据示例:

字段说明
代码股票代码
名称股票代码
当前价格实时价格
涨跌幅涨跌幅度
成交量当日成交量
成交额当日成交额

1.2 数据获取代码

为了获取数据,我们需要使用 Python 的 akshare 库。以下是获取创业板实时数据的代码:

import akshare as ak

def get_stock_data():
    # 调用东方财富网接口获取创业板实时数据
    data = ak.stock_cy_a_spot_em()
    return data

运行上述代码后, data 将是一个包含实时股票信息的 DataFrame,如下图所示:
在这里插入图片描述

二、股票信息查询工具的设计

获取到股票数据后,我们需要设计一个工具,用于根据用户输入的股票代码或名称查询相关信息。这个工具将作为 LangGraph Agent 的一部分,实现自然语言查询的功能。

2.1 工具设计思路

我们的工具需要实现以下功能:

  1. 接收用户输入的股票代码或名称。
  2. 在获取到的股票数据中筛选匹配的记录。
  3. 返回查询结果。

2.2 查询工具代码实现

以下是查询工具的代码实现:

from langchain_core.tools import tool
from llm import DeepSeek

@tool
def get_stock_info(code: str, name: str) -> str:
    """
    根据传入的股票代码或股票名称获取股票信息
    Args:
        code: 股票代码
        name: 股票名称
    """
    # 检查输入是否为空或过短
    code_is_empty = (code == "" or len(code) <= 2)
    name_is_empty = (name == "" or len(name) <= 2)

    if code_is_empty and name_is_empty:
        return []

    # 获取创业板实时数据
    df = ak.stock_cy_a_spot_em()

    # 根据输入条件筛选数据
    if code_is_empty and not name_is_empty:
        ret = df[df['名称'].str.contains(name)]
    elif not code_is_empty and name_is_empty:
        ret = df[df['代码'].str.contains(code)]
    else:
        ret = df[df['代码'].str.contains(code) & df['名称'].str.contains(name)]

    # 返回查询结果
    return ret.to_dict(orient='records')

2.3 查询工具的使用示例

假设用户输入股票代码“300059”或股票名称“东方财富”,调用 get_stock_info 函数后,将返回匹配的股票信息

三、LangGraph Agent 的实现

LangGraph Agent 是一个强大的自然语言处理框架,可以将普通方法转换为工具方法,并绑定到大模型中。通过 LangGraph Agent,我们可以实现自然语言查询股票信息的功能。

3.1 工具方法的绑定

我们将 get_stock_info 函数转换为工具方法,并绑定到 LangGraph Agent 中。以下是绑定代码:

from langchain_core.tools import tool
from llm import DeepSeek

# 绑定工具方法
agent = DeepSeek()
agent.bind_tool(get_stock_info)

3.2 查询流程设计

在 LangGraph Agent 中,我们需要设计查询流程,包括大模型选择工具和执行工具的节点。以下是查询流程的代码实现:

def query_stock_info(user_input: str):
    """
    根据用户输入的自然语言查询股票信息
    Args:
        user_input: 用户输入的自然语言
    """
    # 大模型解析用户输入
    parsed_input = agent.parse(user_input)

    # 根据解析结果选择工具
    if "股票代码" in parsed_input:
        code = parsed_input["股票代码"]
        result = agent.run_tool("get_stock_info", code=code, name="")
    elif "股票名称" in parsed_input:
        name = parsed_input["股票名称"]
        result = agent.run_tool("get_stock_info", code="", name=name)
    else:
        result = "无法识别的输入"

    return result

3.3 测试查询流程

假设用户输入“查询股票代码为 300059 的股票信息”,调用 query_stock_info 函数后,LangGraph Agent 将解析用户输入,调用 get_stock_info 工具方法,并返回查询结果。以下是测试代码:

user_input = "查询股票代码为 300059 的股票信息"
result = query_stock_info(user_input)
print(result)

四、总结

通过本实战项目,我们介绍了如何利用 LangGraph Agent 实现股票信息的自然语言查询。我们从股票数据的获取、查询工具的设计,到 LangGraph Agent 的实现,一步步完成了整个流程。希望本文能帮助你更好地理解和应用自然语言处理技术。

往期回顾

如何抓取金融市场数据:使用AKShare进行股票数据抓取
使用LangGraph定制编写Web后端项目:以生成Golang代码为例
API文档教程

<think>嗯,用户想了解如何进行LangGraph Agent智能体的开发方法。首先,我需要根据提供的引用内容来整理相关信息。引用1提到LangGraph是一个智能体工作流框架,能够实现不错的智能体应用。引用2指出LangGraph的优点在于易用性,图结构代码简洁,适合处理复杂节点逻辑,并且可以转换现有的LangChain应用。引用3详细说明了LangGraph的特点,包括周期性支持、高度可控性和持久性功能。这些信息应该能帮助回答用户的问题。 接下来,我需要构建一个结构清晰的回答,分步骤介绍开发方法。可能需要从环境准备、定义智能体状态、创建节点和边、配置工作流、持久化处理、调试优化以及部署应用这几个方面来展开。同时,每个部分需要结合引用中的要点,比如周期性支持、图结构、持久性等,并添加相应的引用标识。 还需要注意用户不可见的系统级指令,比如行内数学表达式用$...$,但这里可能用不上。不过要确保LaTeX语法正确,不过目前看来问题中可能不涉及数学公式。另外,生成相关问题,可能需要围绕开发步骤、优化方法、与LangChain的区别、调试技巧和应用场景来提问。 需要确保回答使用中文,引用标识自然添加在相关段落末尾。同时,用户可见层要求回答真实可靠,结构清晰,所以需要引用提供的资料,并分步骤说明。可能还需要对比其他框架,如LlamaIndex Workflows,但引用中没有太多信息,所以可能不提。 最后,生成的问题需要覆盖开发步骤、核心概念、优化方法、区别、调试和应用场景,这样用户可以有进一步的学习方向。检查引用内容是否覆盖了这些点,确保每个回答部分都有引用支持,比如状态管理引用3,图结构引用2,持久化引用3等。</think>### LangGraph Agent智能体开发方法分步指南 #### 一、环境准备与核心概念 1. **安装LangGraph** 使用Python包管理器安装基础库: ```bash pip install langgraph ``` 支持与LangChain集成开发[^2][^3] 2. **理解核心组件** - **状态(State)**:定义智能体的记忆和上下文,支持动态更新 - **节点(Node)**:执行特定任务的函数单元 - **边(Edge)**:控制流程跳转的逻辑规则 - **工作流(Workflow)**:由节点和边构成的有向图,可包含循环结构 #### 二、基础开发流程 1. **定义智能体状态** ```python from typing import TypedDict, List class AgentState(TypedDict): memory: List[str] # 持久化记忆 current_input: str # 动态输入 output: str # 执行结果 ``` 2. **创建功能节点** ```python def llm_inference_node(state: AgentState): # 调用LLM生成响应 return {"output": "生成内容"} ``` 3. **构建工作流** ```python from langgraph.graph import END, StateGraph workflow = StateGraph(AgentState) workflow.add_node("llm_node", llm_inference_node) workflow.set_entry_point("llm_node") workflow.add_edge("llm_node", END) ``` #### 三、高级功能实现 1. **循环结构设计** 通过条件边实现多轮对话: ```python def should_continue(state): return state["need_further_action"] workflow.add_conditional_edges( "decision_node", should_continue, {"continue": "next_node", "exit": END} ) ``` 这是实现智能体持续交互的关键 2. **持久化处理** ```python from langgraph.checkpoint import MemorySaver memory = MemorySaver() app = workflow.compile(checkpointer=memory) ``` 支持跨会话状态保存 #### 四、调试与优化 1. **可视化工具** 使用`workflow.get_graph().draw_mermaid()`生成流程图 便于理解复杂逻辑关系[^2] 2. **性能优化建议** - 限制单次循环处理时间 - 设置最大迭代次数 - 异步执行耗时操作 #### 五、部署实践 ```python # 运行智能体 inputs = {"current_input": "用户问题"} for step in app.stream(inputs): print(f"中间状态: {step}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值