基于深度学习的番茄叶部病害识别模型

本文提出了一种基于深度学习的番茄叶部病害识别模型,利用卷积神经网络提取特征,PCA算法降维,改进的Softmax损失函数提高识别准确性。数据来源包括CrowdAI和安徽省农业科学院情报研究所。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于深度学习的番茄叶部病害识别模型

1、研究思路

为实现番茄叶病特征的自动 提取,并提高识别准确率,提出一种基于深度学习的番茄叶病识别模型。该模型基于卷积神经网络对番茄叶部病害特征进行自动提取,获得高维特征后,采用 PCA 降维算法去除冗余特征;从增大类间距离并减小类内距离的角度改进了 softmax 分类器,提高了识别准确率。

2、卷积神经网络

作用
卷积层 对输 入数据进行特征提取。
池化层 对输入的特征进行进一步 的提取,可以简化网络的复杂度,又能保留主要特 征。
全连接层 是将卷积和池化提取的局 部特征重新通过权值矩阵全卷积为完整的特征,因 为应用到了所有局部特征,所以叫全连接。输出层的 作用就是最后对特征进行分类识别,输出结果。
输出层 作用就是最后对特征进行分类识别,输出结果。

3、PCA 算法

主要思想是对数据进行线性变换,将任意数据 变换到新的坐标系中,保留数据中对方差影响最大 的特征。为了得到包含最大差异性的主成分方向&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@@南风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值