SENet细节

SENet是一种引入通道注意力机制的网络结构,通过Squeeze和Excitation步骤强化特征表示。文章详细介绍了SE Block的设计,包括全局信息嵌入、自适应重校准过程,并通过控制变量法的实验探讨了其在ResNet-50中的应用,以及不同参数如Reduction Ratio的影响。实验表明,SE Block能有效提升模型性能,特别是在特征选择和网络鲁棒性方面表现突出。
摘要由CSDN通过智能技术生成

1、Squeeze: Global Information Embedding

Squeeze操作:采用全局池化.即 压缩H和W至1*1,利用1个像素来 表示一个通道,实现低维嵌入。
在这里插入图片描述

2、Excitation: Adaptive Recalibration

公式(3)中,第一个全连接层的激活函数为ReLU:第二个全连接 层激活函数为Sigmoid

重要的参数:reduction ratio r控制第一个全连接层神经元个数,进而影响SE Block的参数量。

关于r的有对比实验,经验值为16

在这里插入图片描述

3、SE Block流程图

【1】Squeeze:压缩特 征图至向量形式
【2】Excitation:两

### SENet 实现在 MATLAB 中的相关讨论 对于 Squeeze-and-Excitation Networks (SENet),最初的设计和广泛的应用主要集中在基于 Python 的框架上,如 PyTorch 和 TensorFlow。然而,在特定场景下确实存在对 MATLAB 版本的需求。 #### 使用 MATLAB 实现 SENet 架构的关键要素 MATLAB 提供了深度学习工具箱来支持自定义层的创建,这使得在 MATLAB 中构建复杂的网络结构成为可能。要实现在 MATLAB 上运行 SE 层,可以按照以下思路: 1. **Squeeze 操作** 定义全局平均池化层以获取输入特征图的空间维度上的统计信息。此过程可以通过 `globalaveragepooling2dLayer` 函数完成[^3]。 2. **Fully Connected Layers with ReLU and Sigmoid Activations** 创建两个全连接层用于降维和升维处理,并分别应用ReLU激活函数以及sigmoid激活函数。这部分可通过 `fullyConnectedLayer`, `reluLayer`, 及 `sigmoidLayer` 来实现。 3. **Excitation Operation** 将得到的比例因子通过逐通道相乘的方式作用于原始特征图之上。该步骤利用矩阵运算即可达成目的。 下面是一个简单的 MATLAB 代码片段展示如何搭建一个基本形式的 SE 块: ```matlab function layer = seBlock(inputSize,reductionRatio) % inputSize is the number of channels in the input feature map. squeezeDim = floor(inputSize/reductionRatio); layers = [ globalAveragePooling2dLayer('Name','squeeze') fullyConnectedLayer(squeezeDim,'Name','fc_downsample',... 'WeightLearnRateFactor',10,... 'BiasLearnRateFactor',10) reluLayer('Name','excite_relu') fullyConnectedLayer(inputSize,'Name','fc_upsample',... 'WeightLearnRateFactor',10,... 'BiasLearnRateFactor',10) sigmoidLayer('Name','excite_sigmoid')]; layer = dlnetwork(layers); end ``` 需要注意的是上述代码仅为概念验证性质,实际部署时还需要考虑更多细节优化问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@@南风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>