基于SiamMask网络的智能视频监控实时人员跟踪系统

本文介绍了一种利用SiamMask深度学习算法实现的实时俯视视角人员跟踪和分割系统。相较于其他实时跟踪算法,SiamMask在跟踪精度上达到95%,并且能进行目标分割。该系统首先从俯视角度获取视频序列,然后通过迁移学习对网络进行额外训练,以适应俯视视角下人体特征的变化。实验结果显示,SiamMask在跟踪和分割方面的表现优于其他算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实时视频监控系统广泛应用于公共区域、商业建筑和公共基础设施等各种环境中。在不同的视频监控应用中,人的检测、分割和跟踪是一个关键和关键的任务。研究人员提出了不同的图像处理和基于人工智能的方法(包括机器和深度学习)来检测和跟踪人,但主要包括正面视角相机视角。本文介绍了一种利用架空摄像机视角的实时人物跟踪和分割系统。该系统采用了一种基于深度学习的算法,即SiamMask算法,简单、通用、快速,超越了其他实时跟踪算法。该算法还通过将掩码分支与全卷积双神经网络相结合,实现目标人的分割,用于目标或人的跟踪。首先从俯视角度获得人物视频序列,然后利用迁移学习进行附加训练。最后,与其他跟踪算法进行了比较。SiamMask算法提供了良好的结果,跟踪精度达到95%。

关键词:智能视频监控;图像处理;深度学习;俯视;人跟踪;SaimMask

1 Introduction

实时视频监控扩展了智能世界的重要性,允许世界范围内的感官连接,充当数字世界和现实世界之间的连接点,并作为各种监控应用的智能和数字转型的令人信服的催化剂。这些应用被广泛扩展到各种公共环境中,用于物理资产、位置的实时监控,分析获得的视频信息以识别安全指标,以及安全规划。机器、深度学习和图像处理技术的出现开启了这一领域新的研究可能性。深度学习使得从图像和视频序列中自动提取和分析信息成为可能。深度学习与图像处理的融合在多种

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@@南风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值