DCU-Net:a deformable convolutional neural networkbased on cascade U-net for retinal vessel segmenta

DCU-net:一种基于级联U-net的可变形卷积神经网络用于视网膜血管分割

摘要:为了进一步提高视网膜血管分割的精度,我们提出了一种基于级联U-Net的可变形卷积神经网络:DCU-Net。DCU-Net的总体结构由两个U-Net组成。引入可变形卷积构建特征提取模块,增强了模型对血管变形的建模能力。为了提高U-Net模型间信息传递的效率,我们使用残差通道注意力模块连接U-Net。DCUNet在公共数据集上取得了很好的效果。在DRIVE和CHASE_DB1数据集上,Acc分别达到0.9568、0.9664,AUC分别达到0.9810、0.9872。实验结果表明,残差通道注意模块和残差变形卷积模块极大地提高了视网膜血管分割的精度。我们的方法的综合性能优于一些最先进的方法。

1 介绍

视网膜血管的结构可以作为相关疾病的重要诊断依据。然而,由于视网膜血管结构的复杂性和个体差异,在直接提取的彩色视网膜图像中,血管与背景的对比度很低。特别是在血管末端,人眼很难从背景中有效区分血管。这给相关疾病的诊断带来了很大的困难。因此,视网膜血管的自动分割具有在现代医学中有很大的应用价值。许多研究者已经提出了大量的算法来解决这个问题。常用的基于机器学习的视网膜血管分割方法依赖于人工设计特征。因此,它要求研究人员具备优秀的专业知识。另一方面,这种方法只能独立对像素进行分类,导致推理速度慢,应用困难。

近年来,随着人们对健康的重视,医疗服务与计算机技术相结合的趋势更加明显[4-6]。特别是深度学习技术发展迅速,取得了令人瞩目的医学图像分割成果。由于全卷积网络(fully convolutional network, FCN)[17]已经成功地应用于图像分割任务,使得图像分割的性能和速度得到了显著的提高。基于fcn的图像分割方法很快被引入到医学图像分割中,其中许多方法在视网膜血管分割任务中表现良好。例如,众所周知的U-Net网络[23]可以同时考虑全局上下文信息和局部纹理信息,仅用少量数据就可以获得良好的分割性能。U-Net也被应用于其他图像分割应用[14],基于U-Net的图像分割模型不断被提出。这些模型的分割性能和推理速度也得到了提高。Zhou等[32]将DenseNet应用于U-Net的跳接通道,以提高不同层之间的信息交换。jsamuou等[10]在U-Net的下采样编码路径和上采样解码路径中加入密集连接进行特征提取,有效提高了室外场景分割的精度。Oktay等[21]利用U-Net解码器与跳越连接信道之间信息融合中的注意机制,构建了注意U-Net,有效提高了模型性能。R2U-Net (Recurrent residual convolutional neural network,基于U-Net的循环残差卷积神经网络)[1]将循环神经网络嵌入到U-Net网络中,构建了结合残差连接的图像分割模型。该模型在视网膜血管分割、皮肤癌分割、肺部分割等方面都有很好的效果。miletari等[19]提出了V-Net (Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation),将U-Net引入到三维图像分割中。该方法还成功地应用于前列腺磁共振图像的分割。Li等[15]在常规U-Net的基础上提出了混合密集U-Net (Hybrid DenseU-Net, H-DenseU-Net),将二维特征和三维上下文信息有效融合,并进行联合优化,实现肝脏和病变的准确分割。

与自然图像的语义分割相比,医学图像分割模型通常需要考虑训练数据较少和训练样本不平衡的问题。视网膜血管分割是训练数据不足、正负样本严重失衡的典型案例。该问题一直是医学图像分割领域的研究热点。随着深度学习技术的发展,人们提出了许多高性能的视网膜血管分割算法。Li等[12]将视网膜血管分割问题转化为从视网膜图像到血管图像的跨模态数据转换,提出了一种新的视网膜血管分割网络。Ngo等[20]将多尺度视网膜图像输入到卷积神经网络(CNN)中,并使用dropout技术增强模型泛化。Feng等[7]设计了CcNet(cross-connected convolutional network,交叉连接卷积网络),对主通道和副通道之间的特征进行多次融合,使模型能够融合多层次的特征信息。Wu等[27]构建了基于normal U-Net的视网膜血管分割网络,可以融合多尺度信息。此外,他们进一步提出一种基于多尺度深层特征的多路径监督视网膜血管分割方法[28]。Araujo等[2]提出了一种视网膜分割模型,其中典型的分割网络和变分自动编码器(VAE)级联。该网络通过学习丰富紧凑的结构空间来纠正拓扑不一致性。Yu等[30]提出了一种基于知识转移和形状一致的无监督生成对抗网络(GAN)用于小管动脉分割,有效降低了医学图像标注的成本。Zhang等[31]利用U-Net结构和残

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
这些术语通常与数据库性能相关。它们的含义如下: - %CPU:CPU 使用率的百分比。 - LOAD:系统的平均负载,表示正在等待 CPU 的进程数。 - %DCU:缓冲池未命中率的百分比,表示需要从磁盘读取的块数。 - AAS:平均活动会话数,表示并发会话的数量。 - ASC:平均每秒会话数,表示平均每秒启动的新会话数量。 - ASI:平均每秒用户交互数,表示平均每秒用户发起的交互(例如 SQL 查询)的数量。 - ASW:平均每秒等待数,表示平均每秒处于等待状态的会话数量。 - ASP:平均每秒 SQL 执行数,表示平均每秒执行的 SQL 查询数。 - AST:平均 SQL 执行时间,表示平均每个 SQL 查询所需的时间。 - UST:平均用户会话时间,表示平均每个用户会话的持续时间。 - MBPS:每秒钟的磁盘数据传输速率,表示磁盘 I/O 性能。 - IOPS:每秒钟的 I/O 操作次数(输入/输出操作每秒)。 - IORL:I/O 响应时间的平均值,以毫秒为单位。 - LOGR:逻辑读取次数,它是从缓存读取的块数。 - PHYR:物理读取次数,它是从磁盘读取的块数。 - PHYW:物理写入次数,它是写入磁盘的块数。 - %FR:自由空间的百分比,它是用于衡量磁盘空间利用率的指标。 - PGA TEMP:PGA 区域的平均温度,表示 PGA 区域使用情况。 - UTPS:平均每秒用户事务数,表示平均每秒提交的事务数量。 - UCPS:平均每秒并发用户数,表示同时处于活动状态的用户数。 - SSRT:平均每个 SQL 查询的服务时间,表示从开始执行 SQL 查询到返回结果所需的时间。 - DCTR:平均每秒数据库事务数,表示平均每秒提交的事务数量。 - DWTR:平均每秒数据库写入数,表示平均每秒写入数据库的块数。 - %DBT:数据库时间的百分比,表示数据库时间与总响应时间的比率。 这些术语通常用于监控和优化数据库性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值