Enhancing gland segmentation in colon histology images using aninstance-aware diffusion model

使用实例感知扩散模型增强结肠组织学图像中的腺体分割

摘要:

在病理图像分析中,确定结肠组织学图像中的腺体形态对确定结肠癌的分级至关重要。然而,人工分割腺体是极具挑战性的,有必要开发自动分割腺体实例的方法。近年来,由于强大的噪声到图像去噪管道,扩散模型已成为计算机视觉研究的热点之一,并在图像分割领域得到了探索。本文提出了一种基于扩散模型的实例分割方法,可以实现自动gland实例分割。

首先,我们将结肠组织图像的实例分割过程建模为基于扩散模型的去噪过程。其次,为了恢复去噪过程中丢失的细节,我们使用实例感知滤波器和多尺度掩码分支来构建全局掩码,而不是只预测局部掩码。再次,为了提高目标和背景的区别,我们采用条件编码对中间特征与原始图像进行增强。为了客观地验证所提出的方法,我们在2015年MICCAI Gland Segmentation challenge (GlaS)数据集(165张图像)、结直肠癌腺癌腺(CRAG)数据集(213张图像)和RINGS数据集(1500张图像)上比较了几种最先进的深度学习模型。本文提出的方法在CRAG (Object F1 0.853±0.054,Object Dice 0.906±0.043)、GlaS Test A (Object F1 0.941±0.039,Object Dice 0.939±0.060)、GlaS Test B (Object F1 0.893±0.073,Object Dice 0.889±0.069)和RINGS数据集(Precision 0.893±0.096,Dice 0.904±0.091)上得到了显著提高的结果。实验结果表明,我们的方法显著提高了分割精度,实验结果证明了该方法的有效性。

1. 介绍

结直肠癌是世界范围内普遍存在的一种癌症。主要表现为结直肠腺癌,发生于结肠或直肠的内层,通过腺体结构的形成来鉴别[1]。这些腺体在各种器官系统的蛋白质和碳水化合物分泌中起着至关重要的作用。为了评估结直肠癌的分化,病理学家通常使用苏木精和伊红染色对腺体进行组织学检查[2]。腺体形成的程度是病理学家用来确定肿瘤分级或分化程度的关键因素。在组织学图像上准确分割腺体是评价结直肠腺癌腺体形态和判断其恶性程度的重要方法。腺体的准确分割不仅对结直肠腺体的病理组织学切片很重要,对前列腺等其他器官的组织学切片也很重要[3]。手动标注腺体

实例是一个耗时的过程,需要高度的专业知识和奉献精神。因此,自动分割腺体实例的方法在临床实践中具有重要意义。

自动分割一直是几种基于深度学习技术的主题[4-6]。这些方法包括语义分割网络,如U-Net[7]、FCN[8]、Siamese network[9]及其变体[10-12]。也有将信息瓶颈结合起来进行检测和分割的方法[13-15]。这项工作的另一个方面涉及两阶段实例分割方法,其中包括Mask R-CNN[16]和BlendMask[17]等方法。

这些技术主要集成两个子网络,以顺序的方式进行目标检测和分割[18]。然而,这些方法在捕捉不同形状的细胞位置和区分接近的腺体边界方面可能会遇到挑战[10,19]。为了克服这些限制,我们的目标是进行腺体实例分割,以准确识别目标位置,防止背景组织的错误分类。

图1所示。(a-b)来自CRAG数据集的示例图像。(c-d)来自GlaS数据集的示例图像。(e-f)来自RINGS数据集的示例图像。

最近,扩散模型[20]作为一种高效的生成模型[21,22]得到了广泛的应用。与氮化镓相比,它已经证明了产生卓越质量和品种的输出的能力[19,23]。此外,扩散模型也被用于其他各种任务[24]。在DiffusionDet[25]中,目标检测任务被视为图像中边界框空间内的生成任务,以有效地解决遮挡检测问题。此外,一些研究已经研究了在医学图像分割中使用扩散模型的可行性[26,27],这些方法从有噪声的图像中生成分割图,与之前的深度学习方法相比,这些方法对分割细节的表示有所改进。这启发了我们提出一种新的腺体实例分割方法。

在本文中,我们提出了一种新的实例感知扩散模型用于gland实例分割。这些贡献总结如下:

∙我们的方法涉及将组织学图像中的腺体实例分割过程建模为使用扩散模型的去噪过程。据我们所知,这是第一个基于扩散模型的gland实例分割方法。

∙为了增强分割过程,我们采用了实例感知技术,旨在恢复在去噪过程中可能丢失的细节。具体来说,我们利用一个滤波器和一个多尺度掩码分支来构建一个全局掩码,并细化分割的细节。

∙为了增强目标和背景之间的区别,我们采用条件编码来增强原始图像编码的中间特征。该方法有效地融合了原始图像的丰富信息,从而提高了感兴趣对象与周围背景的区分能力。

我们提出的框架在2015年MICCAI Gland Segmentation (GlaS) Challenge数据集[28,29]、结直肠癌腺癌腺(CRAG)数据集[30-32]和RINGS数据集[3]上进行了训练和测试(如图1所示),实验结果证明了该方法的有效性。

2. 相关的工作

近年来,人们对基于深度学习的腺体组织学图像分割方法进行了大量的研究,并取得了显著的进展。此外,扩散模型已经成为一种很有前途的深度学习技术。在随后的章节中,我们将分别讨论腺体分割方法和扩散模型,重点介绍它们各自对该领域的贡献。

2.1. 腺体分割

组织病理学中大多数传统的腺体分割方法依赖于分水岭算法、纹理、形态学、腺体结构和简单的阈值分割技术。然而,近年来,在使用深度学习方法进行腺体分割方面取得了重大进展[4,14]。这些工作大多使用GlaS和CRAG数据集。全卷积网络(Full Convolutional Network, FCN)[8]和UNet[7]是其中最具代表性的网络。

继FCN被用于语义分割之后,许多基于FCN的腺体分割网络被提出。深度卷积神经网络(cnn)也被研究用于腺体分割。U-Net是一种有效的分割网络,它由两条路径组成:一条用于集中信息的收缩路径和一条用于精确定位的扩展路径。

其他方法包括SegNet[33],它是一种基于编码器-解码器的分割网络,使用编码器对数据进行编码,使用解码器实现非线性采样。这项工作获得了对象F1的结果(CRAG 0.736,GlaS  A0.858,测试B 0.753)。DCAN[34]网络可以灵活地使用上下文特征,准确地预测腺体轮廓。深度多通道神经网络从多个方面进行多通道信息融合。这项工作获得了对象F1 (CRAG 0.622,GlaS  A0.912,测试B 0.716)的结果。

腺语义分割的FCN网络采用了从粗到精的提取思想,利用预训练的网络进行细化和特征细节挖掘,实现更精确的分割。

这项工作获得了对象F1 (CRAG 0.558GlaS  A0.783,测试B 0.692)的结果。Micro-Net[35]用于分割微观图像中的目标,主要是通过使用多分辨率滤波器来处理输入图像的多分辨率。这项工作获得了对象F1(GlaS  A 0.913,测试B 0.724)的结果。多尺度全卷积网络[36]提出了一种自动化的多尺度卷积分割网络,它采用三级分类,并结合了一个高分辨率的分离分支。这项工作获得了对象F1的结果(GlaS测试A 0.914,测试B 0.850)。

DeepLab网络[37]使用金字塔模型在多个尺度上进行特征提取,并使用卷积层来扩展卷积块的视野。它采用广泛的网络化条件随机场来精确定位腺体的边界。这项工作获得了对象F1的结果(CRAG 0.648, GlaS测试A 0.862,测试B 0.764)。Rota-Net[38]采用90◦多重组等变卷积旋转,并结合分离腺体的分类方法。这项工作获得了对象F1的结果(GlaS测试A 0.920,测试B 0.824)。注意引导深度残差U-Net[11]将多级判别特征与基于注意的粗到细特征引导相结合。这项工作获得了对象F1的结果(CRAG 0.825, GlaS测试A 0.914,测试B 0.844)。MILDNet[32]使用随机变换和空间金字塔池来

通过引入原始图像实现更好的性能,并实现最小的信息损失。这项工作获得了对象F1的结果(CRAG 0.911, GlaS测试A 0.937,测试B 0.901)。

DoubleU-Net[18]在分层多尺度上学习语义特征,在混合模型中学习相似性,并在特殊腺体形态分割中实现性能提升。这项工作获得了对象F1的结果(CRAG 0.835, GlaS测试A 0.935,测试B 0.871)。GCSBA网络[39]使用多尺度机制学习上下文信息,特别关注边界问题。这项工作获得了对象F1的结果(CRAG 0.836, GlaS测试A 0.916,测试B 0.832)。其他分割各种器官病理组织图像的方法也存在,包括专门用于分割前列腺图像的RINGS算法[3]。

尽管这些方法取得了很好的结果,但由于组织病理图像的复杂性和腺体的不同形态,自动分割腺体仍然是一项具有挑战性的任务。

2.2. 扩散模型

扩散模型是一种基于马尔可夫链的生成模型,它可以将高斯分布等简单分布转化为复杂分布的样本。扩散模型可以生成高质量的图像,可以与最新的GAN方法竞争,甚至优于GAN方法[20,40]。医学领域的生成建模和判别任务已经从扩散模型的使用中看到了显著的好处。其中一个例子是Chung等人[41]的工作,他们开发了一种基于扩散模型的架构,用于重建快速扫描的MRI图像。他们的研究结果表明,所提出的模型优于以前的最先进的方法,甚至可以在训练分布之外生成高保真度的数据。Kim等[42]引入了用于图像分割任务的扩散变形模型,该模型使用了扩散模型和变形模块。

利用源图像和目标图像构建扩散模型中的潜码,在变形模块中利用获取的潜码和源图像生成畸变图像。要使扩散模型得到理想的结果,必须控制反向扩散过程。如Lyu等[43]和Xie等[44]的作品所示,在自举过程中可以应用各种约束来实现这一点。如Lyu等采用T2w MR图像调节扩散模型,SDE获取CT图像,Xie等提出了一种测量调节扩散模型,用于欠采样医学图像重建。

尽管如此,之前的研究在深度学习的腺体分割有特定的局限性和缺点。缩放和的过程

由于gland实例的形态不同,以前的方法中裁剪图像可能会导致信息丢失或失真。结果往往导致边界识别效果不佳,经常出现过分割或欠分割的情况。相反,扩散模型通过启用全局建模来解决这些问题。

它通过数据的随机游走和参数学习,对每个部分进行统一的关注,然后逐步过滤。因此,它提供了一个更全面的了解腺体形态。

3. 方法

在本节中,我们将首先提供扩散模型的简要概述。我们的方法引入了一种新的实例感知扩散模型用于腺体实例分割,该模型结合了生成去噪过程。此外,我们利用扩散模型中的原始图像特征来增强分割过程,从而获得精确和准确的分割结果。接下来,我们将介绍我们提出的方法的架构,其中包括一个图像编码器,一个图像解码器和一个掩码分支。网络架构图如图2所示。

图2所示。我们的模型的网络架构图。图像编码器由从输入图像中提取多尺度特征的主干组成。基于扩散模型的图像解码器将原始图像特征作为增强中间特征的条件。为了保留多尺度信息,我们引入了一个Mask Branch,该Branch在Fmask上运行。通过将权重从过滤器分配到Fmask的卷积应用于此,我们获得了实例掩码。

3.1. 数据

我们对三个不同的数据集进行了评估:GlaS数据集、CRAG数据集和RINGS数据集。

GlaS数据集共包含165张图像,其中85张图像分配用于训练,80张图像分配用于测试。测试集进一步分为测试A(60张图像)和测试B(20张图像)。GlaS数据集中的每张图像的尺寸为775 × 522像素,并伴随着实例分割的ground truth,以准确地突出腺体边界,以及精确的流明注释。该数据集来源于16张H&E染色的全幻灯片图像(wsi),使用MIRAX MIDI幻灯片扫描仪以20倍放大的像素分辨率扫描。

CRAG数据集共包含213张图像,其中173张用于训练,40张用于测试。CRAG数据集中的每张图像的尺寸为1512 × 1512像素,并包含实例级地面真相注释。该数据集来自38个H&E染色的wsi,使用VL120扫描仪以20倍放大的像素分辨率扫描。

最后,RINGS数据集共包含1500张图像,其中1000张用于训练,500张用于测试。RINGS数据集中的每张图像的尺寸为1500 × 1500像素,并附有地面真值注释。此数据集来源于

150 H&E染色的wsi使用Hamamatsu NanoZoomer S210数字载玻片扫描仪扫描,像素分辨率为100倍放大。

为了解决临床数据图像中常见的显著不一致的组织外观变化的挑战,我们采用了Vahadane方法进行染色归一化[45]。该技术包括应用像素变换来增强腺体组织和残余背景之间的对比度,同时保留局部结构。通过实施染色归一化,我们的目标是提高我们的模型对组织外观变化的鲁棒性。

此外,我们在图3中提供了染色归一化前后的数据集对比图像。

Vahadane方法的目的是在实现颜色归一化的同时保持组织结构。虽然它确实有局限性,特别是在解决图像质量问题,如去除伪影和降噪方面,如图3的面板(b)和(f)所示,但这种方法仍然稳定,提供了一个有效的标准化过程,并产生了更逼真的颜色表示的图像。

此外,为了增强训练数据集并降低过拟合的风险,我们采用了各种策略。这些包括图像翻转、平移、高斯模糊、亮度变化和其他增强技术的随机组合。通过以这种方式增加数据集,我们有效地增加了它的大小,允许我们的模型从更多样化的示例中学习,并减少了过度拟合的可能性。

图3所示。(a-b) CRAG数据集上的染色归一化可视化。(c-d) GlaS数据集上的染色归一化可视化。(e-f) RINGS数据集上的染色归一化可视化。上面一行为原始图像,下面一行为相应的归一化图像。

3.2. 背景

扩散模型是一种新的生成模型,在生成图像方面取得了很好的效果,经过训练后可以生成接近训练数据分布的高质量图像。我们根据扩散模型设计了我们的模型[20,46],该模型通常使用两条马尔可夫链,分为两个阶段:前向扩散阶段和后向扩散阶段。网络架构图如图 4 所示。扩散模型主要是通过 T 步时间步长对训练数据进行训练。在前向扩散阶段,高斯噪声被逐渐添加到输入图像中,直到图像被完全破坏,成为具有高斯分布的完全噪声图像。扩散模型的组成部分包括一个称为𝑝𝜃 (𝐳𝑡-1|𝐳𝑡)的反向学习过程和一个称为q(𝐳𝑡|𝐳𝑡-1)的正向扩散过程,前者通过将噪声转换为来自q(𝐳0)的样本来创建样本,后者则将数据从某个目标分布逐渐损坏为正态分布。由于前向过程是一个非均质马尔可夫链,因此可以使用一步转换密度来模拟其动态.

因此简化了计算过程。作为替代方案,Dhariwal 和 Nichol 发现[47]余弦时间表也很有效。反向过程按照生成模型进行采样,参数为𝜃。为 𝑡∈ {𝑇,..., 1},̃𝛼𝑡 = 1-𝛼𝑡-1 𝛼𝑡 𝛼𝑡。因此,边际似然𝑝𝜃 (𝐳0|𝐳𝑡)的变分下限𝐿𝑉𝐿𝐵可视为训练𝑝𝜃 (𝐳𝑡-1|𝐳𝑡)的损失函数。该网络的参数𝜃是通过最小化所有时间步的正向分布和反向分布之间的𝐿 divergence 得出的。

因此,边际似然𝑝𝜃 (𝐳0)的变分下限𝐿𝑉𝐿𝐵可视为训练𝑝𝜃 (𝐳𝑡-1|𝐳𝑡)的损失函数。另外,我们也可以从直接𝐳0 中获得𝐳𝑡 的样本,具体方法如下:

3.3. 图像编码器

我们建议对原始图像的深度特征进行后续操作,因此我们使用image Encoder进行高级特征提取。图像编码器以原始图像作为输入,我们使用卷积神经网络,如ResNet [48]特征提取和特征金字塔网络 (FPN) [49] 用于生成多尺度特征图。输入的原始图像为 𝐱,使用 ResNet 作为图像编码器,输出为高级特征表示 F(𝐱)。

其中,𝐅𝑅 表示从 ResNet 获取的特征图。图像编码器只需执行一次操作,就能从原始输入图像𝐱中提取深度特征表征𝐅𝑅。随后,图像解码器利用𝐅𝑅 作为条件,对噪声盒进行迭代改进并生成预测。

3.4.图像解码器

我们的图像解码器基于扩散模型,可以将其视为噪声到真实地面的去噪采样过程。我们使用一组从高斯分布中采样的随机方框作为输入,从图像编码器生成的特征图𝐅𝑅中裁剪 RoI 特征。在这种情况下,数据样本由一组边界框𝐛组成,去噪过程表示为 𝑓𝜃 (𝐛𝑡, 𝑡):

神经网络经过训练,可根据图像𝐱,从𝐛𝑡 预测𝐛0,其中𝐛0 为地面实况框。

我们提出的解决方案解决了从单一静态图像输入进行学习的问题,由于病变或组织与其周围环境的边界不清晰,这在病理图像分割中具有挑战性。我们建议将原始图像特征图作为条件编码纳入扩散模型的每一步。我们的方法承认,初始图像包含准确的分割目标信息,但在区分目标区域与背景方面可能不够精确。相反,在当前步骤中生成的分割图可以突出显示目标区域,但可能缺乏有关原始图像的信息。因此,我们建议将当前步骤的分割信息与原始图像特征整合起来,以达到互补的效果。为此,我们引入了条件编码,利用当前步骤的编码特征来增强其中间特征,并将𝐛𝑡 的分割信息整合到原始图像编码中。

其中,𝐃 表示解码器,𝐄 表示编码器,𝑚 ∈ {1,...,𝑇}。在迭代采样过程中,我们使用了实例感知滤波器(IAF),允许在各步骤之间共享参数。

其中,𝐅𝑡 𝑓 是滤波器的输出特征。在训练阶段,我们会在地面实况中加入噪声盒,噪声盒的数量限制在一定范围内。此外,我们还在不同的采样步骤中从余弦表中引入单调递减的噪声。相反,在测试阶段,我们利用高斯噪声生成预定数量的噪声盒。

3.5.掩码分支

在实例分割技术中,实例掩码有多种表示方法。例如,二进制数、极坐标公式和向量都是一些常见的表示方法。此外,某些方法采用动态掩码来预测掩码 [54],我们在研究中也采用了这种方法。在这一阶段,我们使用掩码分支来融合 FPN 的不同尺度信息,并输出掩码特征𝐅𝑚𝑎𝑠𝑘。扩散过程将 RoI 特征解码为局部掩码和多尺度特征我们认为,由于对实例边缘的要求更高,实例掩膜需要更大的感知域。具体来说,实例掩码可以通过卷积掩码分支的特征图𝐅𝑎𝑚𝑠𝑘和𝐅𝐈𝐀𝐅𝑡 𝑓来生成,计算公式如下:

其中,预测实例特征掩码用𝐬 ∈ 𝐑𝐻× 下场表示。掩码 FCN 头(用𝐌𝐅𝐇表示)由三个 1 × 1 卷积层组成。

我们通过加入𝐋𝑑 和 𝐋𝑠两部分来增强损失函数。𝐋𝑑是 DiffusionDet 的损失,而我们模型中的𝐋𝑠 代表预测的分割掩膜与地面实况𝐬𝐺𝑇之间的重叠程度[55]。𝐋𝑠损失是根据相似性系数计算的,该系数量化了两组数据之间的相似性。

参数𝛾 的作用是优化这两项损失之间的平衡。𝛾 参数允许我们微调模型中两个损失项的相对重要性。这种灵活性至关重要,因为不同的任务可能需要对每个损失项给予不同程度的重视。例如,如果我们的主要目标是实现精确的物体检测,那么我们可以赋予𝐋𝑑 项更高的权重。反之,如果重点是精确地分割对象,则可以给𝐋𝑠 项分配较高的权重。这一可调参数使我们能够根据手头任务的具体要求定制模型的行为。

在实践中,要找到两个损失项之间的最佳平衡点,可能需要进行一些实验和调整。通常的做法是用不同的𝛾 参数值运行模型,并在验证集上评估其性能。𝛾 参数的最佳值通常是在验证集上实现最佳总体性能的参数。在这项工作中,我们选择 𝛾 = 5 来平衡两种损失。

4.实验和结果

数据集的质量和数量对实验的进行至关重要。为了评估所提出的方法,我们在 GlaS 数据集和 CRAG 数据集上进行了实验。此外,我们还对前列腺腺体的分割任务和 RINGS 数据集进行了实验,以验证算法的通用性。在接下来的章节中,我们将介绍评估指标和实现细节,然后进行一系列对比实验和消融研究。

4.1.评估指标

我们使用 GlaS Challenge [28] 中的三个指标来评估分割结果:(1) Object F1,用于衡量检测单个腺体的准确性;(2) Object Dice,用于评估基于体积的腺体分割准确性;(3) Object Hausdorff,用于评估分割结果与地面实况之间的形状相似性。我们根据这些指标为每种方法分配了三个排名编号,并计算它们的总和,以确定每种方法整体性能的最终排名。对于 RINGS 数据集,为了与其他方法进行比较,实验结果用 Precision、Recall 和 Dice 三个指标来表示。(1) Precision 衡量分割的准确性,评估正确预测的正向实例与所有预测为正向实例的比率。(2) Recall 用于评估模型捕捉真实正向实例的能力,计算正确预测的正向实例与所有实际正向实例的比率。

表 1 GlaS 挑战赛数据集的实验结果。S 代表得分,R 代表排名,Rank Sum 指每个评估指标的排名总和。

表 2 在 CRAG 数据集上的实验结果。其中,S 代表得分,R 代表排名,Rank Sum 指每个评价指标的排名总和。

图 5.GlaS 数据集上的实例分割结果。从上到下依次为:原始图像、地面实况、二元分割结果和叠加后的原始图像。

4.2.实施细节

在实验中,我们选择了带有 FPN 的 ResNet-50 作为建议方法的骨干。骨干网在 ImageNet 上进行了预训练。图像解码器、掩码分支和掩码 FCN Head 是端到端的训练。我们在 Ubuntu 18.04 上的 Python 3.8.3 环境中使用 PyTorch 1.10 和 CUDA 11.4 通过 PyTorch 库对 GlaS 和 CRAG 数据集进行了训练。在训练过程中,我们使用了 SGD 优化器,学习率为 2.5 × 10-5,权重衰减为 10-4。我们设置了扩散时间步数 𝑇 = 1000,并选择了从 ⑴ = 10-4 到 𝑇 = 0.02 的线性时间表。训练在 A100 GPU 上进行,批量大小为 2。

图 6.CRAG 数据集上的实例分割结果。从上到下依次为:原始图像、地面实况、二元分割结果和叠加后的原始图像。

表 3 RINGS 数据集的实验结果。其中,S 代表得分,R 代表排名,Rank Sum 指每个评价指标的排名总和。

4.3.glas挑战数据集的结果

我们在 GlaS 数据集上与几种最先进的方法进行了比较,以评估我们提出的模型的性能。这些方法包括 DSE 模型 [50]、DMCN [52]、DCAN [34]、SPL-Net [51]、DoubleU-Net [18]、MILD-Net [32]、GCSBA-Net [39] 和 MPCNN [53]。表 1 概述了这些模型的平均性能。此外,我们还在 GlaS 数据集上直观地展示了我们的模型与地面实况相比的分割结果,如图 5 所示。在测试 A 和测试 B 数据集上,我们提出的模型性能显著提高,超过了第二好的方法。具体来说,在测试 A 中,我们观察到与排名第二的方法相比,物体 F1、物体 Dice 和物体 Hausdorff 分别提高了 0.006、0.01 和 1.793。同样,在测试 B 中,我们的模型也优于排名第二的方法,在对象 F1、对象 Dice 和对象 Hausdorff 方面分别提高了 0.022、0.014 和 3.694。虽然测试 B 显示了更多的由于图像中存在复杂的形态,这项任务极具挑战性,但我们提出的模型在所有情况下都表现出了准确的分割效果。实验结果凸显了我们的方法在提高腺体实例分割准确性方面的有效性。

4.4.CRAG 数据集的结果

此外,还通过与 GCSBA-Net、DoubleU-Net、DSE 模型、MILD-Net 和 DCAN 比较,在 CRAG 数据集上对所提出的模型进行了评估。这些模型的平均性能如表 2 所示。此外,我们还在 CRAG 数据集上直观地展示了我们的模型与地面实况相比的分割结果,如图 6 所示。实验结果表明,我们提出的方法性能优越,与第二好的方法相比,在物体 F1、物体 Dice 和物体 Hausdorff 方面分别提高了 0.017、0.012 和 4.026。这些结果证明了我们的方法在分割不同数据集方面的有效性。

4.5.RINGS 数据集的结果

我们提出的方法在 RINGS 数据集上进行了评估,并与下列模型的性能进行了比较:CIPA [57]、PCG [58]、CPGS [56]、GISM-Net [52] 和 RINGS [3]。这些模型的结果见表 3。此外,我们还在 RINGS 数据集上直观地展示了我们的模型与地面实况相比的分割结果,如图 7 所示。实验结果表明,我们提出的方法达到了 0.893 的精度、0.931 的召回率和 0.904 的 Dice 分数,优于其他模型。这凸显了我们的方法在准确分割各种数据集方面的有效性。

图 7.RINGS 数据集的分割结果。从上到下依次为:原始图像、地面实况、二元分割结果和叠加后的原始图像。

表 4 对 CRAG 和 GlaS 数据集的消融研究结果显示了不同模块对性能的影响。掩膜分支模块有助于多尺度特征提取,而条件编码模块则建立了输入图像特征与扩散模型之间的联系。

我们的算法可直接应用于二进制分割,无需进行任何修改。具体做法是在与分割的不同实例相对应的掩码上执行逻辑 OR 运算。

4.6.消融研究

本节将对消融研究进行调查,以验证框架的不同因素对性能的影响。我们的网络利用掩膜分支和条件编码大大提高了性能和分割质量。我们在 GlaS 和 CRAG 数据集上进行了消减研究,以验证这两个模块的功效,如表 4 所示。掩码分支分析。我们的方法包括使用掩码分支进行多尺度特征提取和与主干网络融合,以及完善图像解码器的输出。无在掩码分支中,原始图像特征被直接输入,缺乏多尺度特征,无法实现细粒度分割。掩码分支可以补偿扩散过程中损失的一些细节部分。通过比较使用和不使用多尺度掩膜分支的结果,我们证明了加入这项技术的意义和必要性。我们的研究强调了掩膜分支在我们的模型中实现卓越性能的重要性。当使用掩膜分支时,我们的方法使对象 F1 分别提高了 0.082、0.09、0.07,对象 Dice 分别提高了 0.07、0.078、0.07,而对象 Hausdorff 在 GlaS Test A、GlaS Test B 和 CRAG 上分别降低了 10.29、11.11、24.47。

条件编码分析   我们利用条件编码建立输入图像特征与扩散模型之间的联系。在没有任何参考条件的情况下直接进行反向扩散可能会导致大量错误,并且需要多次迭代才能达到预期效果。通过在扩散过程中加入条件编码,我们可以整合在扩散过程中融合信息,在区分背景的同时有效强调目标信息。我们通过比较有条件编码和无条件编码的结果,证明了条件编码的重要性。通过使用条件编码,我们观察到在 GlaS 测试 A、GlaS 测试 B 和 CRAG 中,物体 F1 分别提高了 0.048、0.034 和 0.052,物体 Dice 分别提高了 0.026、0.042 和 0.057,而物体 Hausdorff 则分别降低了 6.771、8.115 和 12.141。

5.讨论

虽然我们的方法在腺体实例分割中取得了良好的效果,但在其他实例分割任务中,如核分割,我们也遇到了挑战。细胞核形状不规则,容易扁平和重叠,这增加了分割过程的难度。细胞核分割任务的特点是细胞染色不均匀,细胞核密集,这往往会导致重叠的细胞核合并成一个分割实例。在这种情况下,我们的网络往往会将多个边界不清的小目标归类为单个物体,这表明在处理大量聚集或重叠时,分割精度存在局限性。这种局限性可能源于难以准确区分实例之间的细微差别以及对边界的错误识别。为了解决这一局限性,我们将在今后的工作中重点改进在这些具有挑战性的情况下的分割性能,特别是针对以下三个局限性。局限之一是我们的去噪过程严重依赖边界框,在去噪操作过程中往往会剔除小的目标框。为了缓解这一问题,我们计划探索在训练过程中利用随机噪声来减少对边界框的依赖。另一个限制因素是扩散模型所需的多步骤去噪过程,这导致推理过程缓慢且耗时。为了解决这个问题,我们致力于研究更高效的跨步去噪方法,在保持分割准确性的同时减少处理时间。最后,我们的网络利用原始特征作为条件输入,以补偿扩散过程中的信息损失。但是,这些输入的准确性可能不够,而且增加的噪声会影响原始特征编码的有效性。我们将探索各种技术,以提高原始特征编码的准确性,同时减轻新增噪声的影响。因此,我们的目标是研究更有效的条件编码方法。这将使我们能够为判别任务中的噪声过滤过程提供更精确的实例背景,从而提高我们方法的整体性能。

6.结论

本文介绍了一种利用扩散模型进行腺体实例分割的新方法。我们的方法将实例分割视为基于扩散模型原理的去噪过程。该模型由三个主要部分组成:图像编码器、图像解码器和掩码分支。通过利用扩散模型和条件编码进行去噪,我们能够提高实例定位的准确性,同时解决扩散模型固有的细节缺失问题。此外,通过整合多尺度信息融合,我们的方法取得了更好的分割效果。我们在三个数据集上验证了我们方法的有效性:GlaS、CRAG 和 RINGS。实验结果表明,我们的方法优于多种方法,凸显了其在腺体实例分割方面的功效。

  • 16
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值