优化模型验证关键代码16:获取线性规划模型中对偶变量和极方向(python+Gurobi)

本文详细介绍了如何通过Python和Gurobi获取线性规划模型的对偶变量及极方向。针对有最优解、无界和不可行三种情况,分别展示了获取对偶变量和极方向的代码示例,帮助读者理解线性规划及其对偶问题。
摘要由CSDN通过智能技术生成

目录

1 基础知识

2 获取不可行模型的极方向

3 获取可行模型的对偶变量

4 获取无界模型的极方向


阅读本文你可以获得如下知识:

  • 获取无界模型的极方向
  • 获取不可行模型的极方向
  • 获取有最优解模型的对偶变量

首先介绍一个线性规划问题的PPT:

线性规划及其对偶问题 - 百度文库 (baidu.com)https://wenku.baidu.com/view/e494cc17346baf1ffc4ffe4733687e21af45ffd6.html

1 基础知识

对于一个线性规划模型,它存在有最优解、无界和没有可行解三种情形。

  • 当一个线性规划模型存在最优解时,其对应的对
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

运筹码仓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值