矩阵的核范数(Nuclear Norm)

矩阵的核范数(Nuclear Norm)是一种用于衡量矩阵大小的标准,它特别关注矩阵的奇异值。具体来说,核范数是矩阵所有奇异值的和。奇异值是通过奇异值分解(SVD)得到的,它们是矩阵的非负特征值。核范数的计算公式为:

∥ M ∥ ∗ = ∑ i = 1 n ~ σ i ( M ) \|\mathbf{M}\|_* = \sum_{i=1}^{\tilde{n}} \sigma_i(\mathbf{M}) M=i=1n~σi(M)

其中, σ i ( M ) \sigma_i(\mathbf{M}) σi(M)表示矩阵 M \mathbf{M} M的第 i i i个奇异值, n ~ \tilde{n} n~是矩阵 M \mathbf{M} M的奇异值的个数,取决于 M \mathbf{M} M的维度,具体为 min ⁡ { n , m } \min\{n, m\} min{n,m},其中 n n n m m m分别是矩阵 M \mathbf{M} M的行数和列数。

核范数有以下几个重要性质:

  1. 非负性 ∥ M ∥ ∗ ≥ 0 \|\mathbf{M}\|_* \geq 0 M0,并且当且仅当 M \mathbf{M} M是零矩阵时 ∥ M ∥ ∗ = 0 \|\mathbf{M}\|_* = 0 M=0
  2. 一致性:核范数与矩阵的转置保持一致,即 ∥ M ∥ ∗ = ∥ M ⊤ ∥ ∗ \|\mathbf{M}\|_* = \|\mathbf{M}^\top\|_* M=M
  3. 次可加性:对于任意两个矩阵 A \mathbf{A} A B \mathbf{B} B,有 ∥ A + B ∥ ∗ ≤ ∥ A ∥ ∗ + ∥ B ∥ ∗ \|\mathbf{A} + \mathbf{B}\|_* \leq \|\mathbf{A}\|_* + \|\mathbf{B}\|_* A+BA+B

核范数在许多应用中都非常有用,例如在矩阵完成问题和低秩矩阵近似中,核范数常用作正则化项,以鼓励解的低秩性质。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值