矩阵的范数


前言

矩阵分析学习笔记之矩阵范数。三类重要的矩阵范数:诱导范数(Induced norm),向量式范数(Entry-wise norm),Schatten 范数(Schatten norm)。
矩阵 A ∈ K m × n A\in K^{m\times n} AKm×n 表示其定义在实数域或者复数域上。

一、诱导范数(Induced norm)

诱导范数也称算子范数(operator norm)。诱导 p-范数的定义如下:
∥ A ∥ p = s u p x ≠ 0 ∥ A x ∥ p ∥ x ∥ p \Vert A\Vert_p=\underset{x\neq 0}{\rm sup}\frac{\Vert Ax \Vert_p}{\Vert x\Vert_p} Ap=x=0supxpAxp
特别的,当 p = 1 p=1 p=1 时,有
∥ A ∥ 1 = max ⁡ 1 ≤ j ≤ n ∑ i = 1 m ∣ a i j ∣ \Vert A\Vert_1=\max_{1\le j\le n}\sum_{i=1}^{m}\vert a_{ij}\vert A1=1jnmaxi=1maij
也就是绝对值的列和的最大值。

p = ∞ p=\infty p= 时,有
∥ A ∥ ∞ = max ⁡ 1 ≤ i ≤ m ∑ j = 1 n ∣ a i j ∣ \Vert A\Vert_{\infty}=\max_{1\le i\le m}\sum_{j=1}^{n}\vert a_{ij}\vert A=1immaxj=1naij
也就是绝对值的行和的最大值。

谱范数

p = 2 p=2 p=2 时,称为谱范数,有
∥ A ∥ 2 = λ max ⁡ ( A H A ) = σ max ⁡ ( A ) ≤ ∥ A ∥ F \Vert A\Vert_2=\sqrt{\lambda_{\max}({A^HA})}=\sigma_{\max}(A)\le\Vert A\Vert_F A2=λmax(AHA) =σmax(A)AF
其中, A H A^H AH表示共轭转置,如果是实数矩阵,则表示转置。 σ max ⁡ ( A ) \sigma_{\max}(A) σmax(A)表示最大奇异值。当且仅当 A A A 的秩为1或者零时, A A A 的谱范数等于其F-范数。

二、向量式范数(Entry-wise norm)

矩阵 A A A 的向量式 p-范数的定义如下:
∥ A ∥ p = ∥ V e c ( A ) ∥ p = ( ∑ i = 1 m ∑ j = 1 n ∣ a i j ∣ p ) 1 p \Vert A\Vert_p=\Vert {\rm Vec}(A)\Vert_p=\left(\sum_{i=1}^{m}\sum_{j=1}^{n}\vert a_{ij}\vert^{p}\right)^{\frac1p} Ap=Vec(A)p=(i=1mj=1naijp)p1
该类矩阵范数是将矩阵当做一个向量来处理,维基百科上将这类范数称为 “Entry-wise norm”,这里暂且称之为向量式范数,这不是一个规范的称呼。当 p = 1 , 2 , ∞ p=1,2,\infty p=1,2,时,英文上经常称为 l 1 , l 2 , l ∞ l_1,l_2,l_{\infty} l1l2l范数,也不知道这个 l l l是什么意思。哈工大董增福老师的《矩阵分析教程》则称为 m 1 , m 2 , m ∞ m_1,m_2,m_{\infty} m1,m2,m范数,也不知道m是啥意思。特别的,当 p = 2 p=2 p=2时,被称为F-范数(Frobenius norm)。

F-范数

∥ A ∥ F = ∥ V e c ( A ) ∥ 2 = ∑ i = 1 m ∑ j = 1 n ∣ a i j ∣ 2 = t r a c e ( A H A ) = ∑ i = 1 min ⁡ { m , n } σ i 2 ( A ) \Vert A\Vert_F=\Vert {\rm Vec}(A)\Vert_2=\sqrt{\sum_{i=1}^{m}\sum_{j=1}^{n}\vert a_{ij}\vert^{2}}=\sqrt{{\rm trace}(A^HA)}=\sqrt{\sum_{i=1}^{\min\{m,n\}}\sigma_i^2(A)} AF=Vec(A)2=i=1mj=1naij2 =trace(AHA) =i=1min{m,n}σi2(A)
其中, A H A^H AH表示共轭转置,如果是实数矩阵,则表示转置。 σ i ( A ) \sigma_i(A) σi(A)表示奇异值。 V e c ( A ) {\rm Vec}(A) Vec(A)表示矩阵向量化。

三、Schatten 范数(Schatten norm)

Schatten p-范数的定义如下:
∥ A ∥ p = ( ∑ i = 1 min ⁡ { m , n } σ i p ( A ) ) 1 p \Vert A\Vert_p=\left( \sum_ {i=1}^{\min\{m,n\} } \sigma_i^p(A)\right)^{\frac 1p} Ap=i=1min{m,n}σip(A)p1
σ i ( A ) \sigma_i(A) σi(A)表示奇异值。
所有的Schatten 范数都是酉不变的,也就是 ∀ A ∈ K m × n \forall A\in K^{m\times n} AKm×n对于任意的酉矩阵 U U U V V V,都有
∥ A ∥ = ∥ U A V ∥ \Vert A\Vert=\Vert UAV\Vert A=UAV
特别的,当 p = 2 p=2 p=2时,与F-范数相等, p = ∞ p=\infty p= 时,与谱范数相等, p = 1 p=1 p=1时,与核范数(nuclear norm)相等。核范数也称迹范数(trace norm),定义如下
∥ A ∥ ∗ = t r a c e ( A H A ) = ∑ i = 1 min ⁡ { m , n } σ i ( A ) \Vert A\Vert_*={\rm trace}(\sqrt{A^HA} )=\sum_ {i=1}^{\min\{m,n\} } \sigma_i(A) A=trace(AHA )=i=1min{m,n}σi(A)

四、矩阵2-范数

经常看到网上有提问,F-范数和2-范数的区别,F-范数是不是2-范数。其实,2-范数这个名称是带有歧义的,并没有准确的定义。从这三类范数来说,当 p = 2 p=2 p=2 时,都可以称之为矩阵的2-范数。但是,更多人会约定,2-范数是指 p = 2 p=2 p=2 时的诱导范数,也就是谱范数。比如,matlab中,norm(A,2)给出的结果就是谱范数,哈工大董增福老师的《矩阵分析教程》也将2-范数称为谱范数(详见第三版,P115,定理4.13)。不少人也习惯将F-范数称为2-范数,因为其定义跟向量的2-范数是一样的。
结论:在问题讨论中,最好避免使用2-范数的说法,直接说谱范数或者F-范数,如果要用2-范数这个名称,那就明确它是何种范数。


总结

1.学习了三类重要的矩阵范数,诱导范数(Induced norm),向量式范数(Entry-wise norm),Schatten 范数(Schatten norm)。

2.对2-范数名称混乱的问题进行了分析。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值