在学习完第4章后,了解了什么是货币、经济中可用的货币量就是货币供给以及货币供给如何由家庭、银行系统和中央银行的决策共同决定。现在可以通过解释通货膨胀的经济学理论之一即货币数量理论(quantity theory of money)来考察货币量和价格与收入等其他经济变量的相关性从而考察货币政策的宏观经济影响。该理论根植于早期货币理论家的研究,其中包括哲学家经济学家大卫.休谟David Hume(18世纪苏格兰哲学家和经济学家,认为货币供给的增加导致了价格的上升),它现在仍然是有关货币在长期如何影响经济的最重要的解释。
1.交易与数量方程
货币数量论的起点是人们为了购买产品与服务而持有货币这一见解(也就是说货币的需求来自于产品与服务的交易,即货币的需求来自于货币作为交换媒介的职能): 他们为进行这样的交易需要的货币越多,他们持有的货币就越多。因此经济中的货币量与交易中的美元量相关。
交易与货币之间的关系用如下方程表示,这个方程被称为数量方程(quantity equation):
货币 X 货币流通速度 = 价格 X 交易
(1)
方程中有4个变量。
先看方程的右边:T代表某一时期(比如说一年)的交易总数,即一年中用产品或服务交换货币的次数。P是一次典型交易的价格即交换的美元量。一次交易的价格乘以交易次数等于一年中交换的美元量。
再看方程的左边:M是货币量,V称为货币的交易流通速度(transactions velocity of money),它衡量货币在经济中流通的速度,即一个给定的时期一张美元钞票转手的次数。
这是一个恒等式(identity):如果其中一个变量变动了,那么为了保持等式成立,一个或更多个其他变量也要变动。例如,如果货币量增加而货币流通速度不变,那么,要么价格要么交易次数必须上升。
书中举例:假定在某一年中以每块2美元的价格出售了50块面包。那么T等于每年50块面包,P等于每块面包2美元。交换的货币总量为:
PT = 2美元/块 X 50块/年 = 100美元/年
数量方程的右边等于每年100美元,它是所有交易的美元价值。
假定经济中货币量是20美元。根据数量方程,可以计算出货币流通速度是
V = PT/M = (100美元/年)/(20美元)= 5次/年
也就是说,如果经济中只有20美元时,若要发生每年100美元的交易,每一美元必须每年转手5次。
从交易到收入 (与上述数量方程相比更常见的形式)
数量方程中的交易次数T很难衡量,为了解决这个问题,交易次数T被替换为经济中的总产出Y。
这种替换适当吗?交易与产出是相关的,因为经济生产得越多,买卖交易的产品也就越多。虽然它们并不相同,例如二手车的交易不计入产出。但是,交易的美元价值大体上与产出的美元价值成比例。
如果Y代表产出量,P代表一单位产出的价格,那么产出的美元价值是PY。根据第2章2.1节讨论GDP平减指数时提到的Y相当于实际GDP,现期美元的价值是名义GDP,因此用Y替换交易次数后,P就相当于GDP平减指数。PY就是名义GDP(这个显然比原来数量方程的右边更容易获得)。数量方程变为:
货币 X 货币流通速度 = 价格 X 交易
(2)
由于总产出等于总收入,Y也是总收入,这个形式的数量方程中的V被称为货币的收入流通速度(income velocity of money)。货币的收入流通速度代表在一个给定时期一张美元钞票进入某个人收入的次数。这个形式的数量方程是最常见的。
2.货币需求函数和数量方程
当我们分析货币如何影响经济时,把货币量认为是它可以购买的产品与服务的数量常常是有帮助的。这个量即M/P,称为实际货币余额(real money balances)。
实际货币余额衡量货币存量的实际购买力,M一定的情况下,P越高即价格越高,实际货币余额越少,能购买的数量越少,即购买力越低;P一定的情况下,M越高即货币越多,实际货币余额越高,能购买的数量越多,即购买力越高。
货币需求函数(money demand function)是一个表明人们希望持有的实际货币余额数量的决定因素的方程。以下是一个简单的货币需求函数:
\[ (M/P)^{d} = kY\] (3)
式(3)中,k为常数,它告诉我们对于每一美元的收入,人们想持有的货币是多少。这个方程说明,实际货币余额需求量与实际收入成比例。实际收入越高,实际货币🈷余额的需求量越高即实际购买力越高。
式(3)只是一个简单的货币需求函数,为什么这么说呢?因为这里只考虑收入对实际货币余额需求的影响,实际上人们还可能根据其他因素比如名义利率的高低决定持有货币的多少,这里忽略利率对实际货币余额需求的影响,假设需求和收入呈线性关系。
这个货币需求函数提供了看待数量方程的另一种方式。为了理解这一点,给货币需求函数加上一个条件:实际货币余额需求必须等于供给,即
因此,M/P = kY
简单整理后: M(1/k) = PY
也可以写成 MV = PY, V = 1/k。
因此,人们想对每一美元的收入持有大量货币时(k大),货币转手就不频繁(V小)流通速度小;相反,人们只想持有少量货币时(k小),货币转手就频繁(V大)。
3.货币流通速度不变的假设
数量方程可以看成是货币流通速度的定义:它把货币流通速度定义为名义GDP即PY与货币量M的比率。但是,如果我们假设货币流通速度不变,那么数量方程就产生了关于货币影响的一个有用的理论,称为货币数量论。
当然,货币流通速度不变只是现实的一种简化,如果货币需求函数变动,货币流通速度确实在变动。例如当自动取款机被引入时,人们可以减少他们平均的货币持有量,这就意味这货币需求参数k的下降和货币流通速度V的上升。
如果我们假设货币流通速度不变,数量方程就可以写为:
\[ M \overline{V}=PY \]
V上的横线意味着货币流通速度是固定的,数量方程就可以看作是一个关于名义GDP的决定因素的理论。即货币数量M的变动必定引起名义GDP(PY)的同比例变动,
4.货币、价格和通货膨胀
所以该理论解释什么决定了经济的价格水平。这个理论有三个组成部分:
(1)生产要素和生产函数决定产出Y。(这是在第3章国民收入得出的结论)
(2)货币供给决定产出的名义价值PY(货币流通速度固定的假设)
(3)价格水平是产出的名义价值PY和产出Y的比率。
也就是说,经济的生产能力决定实际GDP,货币量决定名义GDP,名义GDP和实际GDP之比为GDP平减指数即P。
这样就能解释当中央银行改变货币供给时会发生什么。当货币流通速度不变时,货币供给M的变动会引起名义价值PY的同比例变动。由于生产函数和生产要素决定了产出Y,所以PY只有在P变动时才会改变。因此,货币数量论意味着价格水平与货币供给成比例。
通货膨胀率时价格水平的百分比变动,所以可以用百分比变动的形式表示数量方程为:
%∆M+%∆V=%∆P+%∆Y
其中假设V不变,Y由生产要素和生产函数决定也视为固定,那么货币供给的增长就决定了通货膨胀率。
因此,货币数量论说明,中央银行通过控制货币供给就可以控制通货膨胀率。如果保持货币供给稳定,则价格水平也稳定;如果中央银行增加货币供给,价格水平就迅速上升。
<补充:货币数量论和数量方程
参考
https://mbd.baidu.com/newspage/data/dtlandingsuper?nid=dt_3735674108579354988
货币数量论有两个流派:现金交易说和现金余额说。上述两部分数量方程的推导分别对应这两个流派。
<1>现金交易说
欧文·费雪揭示了名义<应该是“实际”?>收入(Y)与货币数量(M)、物价水平(P)、商品和劳务的交易总量(T)以及货币流通速度(V)之间的关系,提出了著名的交易方程式,MV=PT即上面的式(1)。但是由于所有商品和劳务交易总量的资料不容易获得,而且人们关注的重点往往也是国民收入,而不在于交易总量,所以上述交易方程式通常被写成下面的形式(数量方程的国民收入形式):MV=PY即式(2),从这一方程式导出一定价格水平之下的名义货币需求量,
即:M=PY/V
这就是由传统货币数量论导出的货币需求函数,正如书中所说它表明人们持有货币仅为了满足交易之需,货币需求量取决于货币流通速度和名义国民收入。根据其假设,货币流通速度是一个相对稳定的量,所以货币需求取决于名义国民收入。现金交易说的不足在于:①把货币只当成一种交易媒介;②假定货币流通速度和商品交易量在长期内是相对稳定的;③没有考虑微观主体动机对货币需求的影响,过分强调制度因素对货币需求量的作用。
(2)现金余额说
现金余额说认为,货币不仅具有交易媒介职能,还具有价值储藏职能。因此,一方面,他们赞同费雪的观点,认为货币需求与交易水平有关,交易量越多,人们愿意持有的货币余额就越多,并且其与交易价值保持着一个固定的比率;另一方面,他们又超越了费雪的观点,认为人们的财富水平和持有货币的机会成本也影响货币需求。持有货币的机会成本就是市场利率,即货币需求受利率水平的影响,这与费雪的现金交易说大不相同。但遗憾的是,他们在得出结论时把这一因素忽略了,只是简单地断定人们的货币需求与财富的名义值成比例,财富又与国民收入成比例,所以货币需求就与名义国民收入成比例。
剑桥学派的现金余额方程式为:M = kPY,其中k代表持币比例,即以货币形态保有的财富占全部财富的比例。
>