EfficientNet图像分类原理简介

 EfficientNet基础网络模型结构如下,除了常规的卷积、池化、全连接之外,其最重要的模块就是MBConv。

MBConv的具体结构如下图所示: 

 其主要引入了SE通道注意力机制和跳跃连接。SE模块通过显式建模信道之间的相互依赖性来自适应地重新校准信道特性响应,通过该机制,网络可以学习使用全局信息来选择性地强调信息特征并抑制不太有用的特征。而跳跃连接可以有效解决网络训练过程中可能出现的梯度消失问题,有利于构建更深的网络。

通过多个MBConv的叠加,即可提取出有效的图像深层特征。随后将图像特征展开成一维向量,再经过全连接层和softmax之后即可得到输出向量,即可得到输入图片属于每个类别的置信度。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
EfficientNet是一种高效的神经网络架构,可以用于图像分类任务。下面是使用EfficientNet进行图像分类的一般步骤: 1. 准备数据集:首先,你需要准备一个包含图像和对应标签的数据集。确保数据集中的图像已经被正确标注。 2. 导入必要的库和模块:在使用EfficientNet之前,你需要导入相关的库和模块。常用的库包括PyTorch、torchvision和EfficientNet-PyTorch。 3. 加载和预处理数据:使用torchvision库中的函数加载和预处理数据集。你可以使用transforms模块中的函数对图像进行常见的预处理操作,例如缩放、裁剪和归一化。 4. 定义模型:使用EfficientNet-PyTorch库中的函数来定义EfficientNet模型。你可以选择不同的EfficientNet版本(如EfficientNet-B0、EfficientNet-B1等),具体选择哪个版本取决于你的任务需求和计算资源。 5. 设置优化器和损失函数:选择适当的优化器和损失函数来训练EfficientNet模型。常用的优化器包括Adam和SGD,常用的损失函数包括交叉熵损失函数。 6. 训练模型:使用训练数据集对EfficientNet模型进行训练。通过迭代训练数据集中的图像和标签,不断更新模型的权重和偏置,以使模型能够更好地预测图像的标签。 7. 测试模型:使用测试数据集对训练后的EfficientNet模型进行测试。通过将测试数据集中的图像输入到模型中,并与其对应的标签进行比较,评估模型的性能和准确率。 8. 进行预测:使用训练好的EfficientNet模型对新的图像进行预测。将新的图像输入到模型中,并根据模型的输出进行分类预测。 下面是一个使用EfficientNet进行图像分类的示例代码: ```python import torch import torchvision from efficientnet_pytorch import EfficientNet # 加载和预处理数据 transform = torchvision.transforms.Compose([ torchvision.transforms.Resize((224, 224)), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) train_dataset = torchvision.datasets.ImageFolder('train_data', transform=transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True) # 定义模型 model = EfficientNet.from_pretrained('efficientnet-b0', num_classes=10) # 设置优化器和损失函数 optimizer = torch.optim.Adam(model.parameters(), lr=0.001) criterion = torch.nn.CrossEntropyLoss() # 训练模型 for epoch in range(10): for images, labels in train_loader: optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 测试模型 test_dataset = torchvision.datasets.ImageFolder('test_data', transform=transform) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=False) correct = 0 total = 0 with torch.no_grad(): for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy = correct / total print('Accuracy: {:.2f}%'.format(accuracy * 100)) # 进行预测 new_image = transform(Image.open('new_image.jpg')).unsqueeze(0) output = model(new_image) _, predicted = torch.max(output.data, 1) print('Predicted label:', predicted.item()) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值