损失函数+++

1、 LR的损失函数

最大似然损失函数(MLE)
L o s s = − y i ∗ l o g ( p ( x i ) ) − ( 1 − y i ) ∗ l o g ( 1 − p ( x i ) ) Loss=-y_{i} *log(p(x_{i}))-(1-y_{i})*log(1-p(x_{i})) Loss=yilog(p(xi))(1yi)log(1p(xi))

2、相对熵(KL散度)

D K L ( p ∣ ∣ q ) = ∑ x ( p ( x ) ) ∗ l o g p ( x ) q ( x ) D_{KL}(p\left | \right | q)=\sum_{x}(p(x))*log\frac{p(x)}{q(x)} DKL(pq)=x(p(x))logq(x)p(x)

3、交叉熵

H ( p , q ) = − ∑ x p ( x ) ∗ l o g ( q ( x ) ) H(p,q)=- \sum_{x}p(x)*log\left ( q(x) \right ) H(p,q)=xp(x)log(q(x))

3.1交叉熵函数与最大似然函数的联系和区别?

区别:交叉熵函数使用来描述模型预测值和真实值的差距大小,越大代表越不相近;似然函数的本质就是衡量在某个参数下,整体的估计和真实的情况一样的概率,越大代表越相近。

联系:交叉熵函数可以由最大似然函数在伯努利分布的条件下推导出来,或者说最小化交叉熵函数的本质就是对数似然函数的最大化。

4、log loss

用于二分类任务
L o s s = − 1 N ∗ ∑ N i = 1 ( ( y i ∗ l o g ( p i ) + ( 1 − y i ) ∗ l o g ( 1 − p i ) ) Loss=- \frac{1}{N}*\sum_{N}^{i=1} ((y_{i}*log(p_{i})+(1-y_{i})*log(1-p_{i})) Loss=N1Ni=1((yilog(pi)+(1yi)log(1pi))
缺点:每一次梯度回传对每一个类别具有相同的关注度,容易受类别不平衡的影响。

5、均方误差(Mean Squared Error)

均方误差是指参数估计值与参数真值之差平方的期望值; MSE可以评价数据的变化程度,MSE的值越小,说明预测模型描述实验数据具有更好的精确度。
通常用来做回归问题的代价函数。
M S E = 1 N ∑ i = 1 N ( y ( i ) − f ( x ( i ) ) ) 2 MSE = \frac{1}{N} \sum_{i=1}^N (y^{(i)} - f(x^{(i)}))^2 MSE=N1i=1N(y(i)f(x(i)))2

6、均方根误差

均方根误差是均方误差的算术平方根,能够直观观测预测值与实际值的离散程度。
通常用来作为回归算法的性能指标。
R M S E = 1 N ∑ i = 1 N ( y ( i ) − f ( x ( i ) ) ) 2 RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^N (y^{(i)} - f(x^{(i)}))^2 } RMSE=N1i=1N(y(i)f(x(i)))2

7、平均绝对误差

平均绝对误差是绝对误差的平均值 ,平均绝对误差能更好地反映预测值误差的实际情况。
  通常用来作为回归算法的性能指标。
M A E = 1 N ∑ i = 1 N ∣ y ( i ) − f ( x ( i ) ) ∣ MAE = \frac{1}{N} \sum_{i=1}^N |y^{(i)} - f(x^{(i)})| MAE=N1i=1Ny(i)f(x(i))

8、focal loss

在这里插入图片描述
alpha用于平衡正负样本不均的问题。
gamma调节简单样本权重降低的速率,当gamma为0时即为交叉熵损失函数,当gamma增加时,调整因子的影响也在增加。实验发现gamma为2是最优。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值