随机变量函数的分布
开篇先引出问题 \quad
-
若要得到一个圆的面积 Y Y Y,总是测量其半径,半径的测量值可看做随机变量 X X X,若 X ∼ N ( μ , σ 2 ) X\sim N(\mu, \sigma^{2}) X∼N(μ,σ2),则 Y = π X 2 Y=\pi X^{2} Y=πX2 的分布是什么?
-
若已知体重 W ( k g ) W(kg) W(kg) 均服从正态分布,在身高 L ( c m ) L(cm) L(cm) 确定的情形下,则体质指数 B M I = W / L 2 BMI=W/L^{2} BMI=W/L2 服从什么分布?
问题:已知随机变量 X X X 的分布, Y = g ( X ) Y=g(X) Y=g(X),函数 g ( ⋅ ) g(·) g(⋅) 已知,求 Y Y Y 的分布。
例 1: 设随机变量
X
X
X 的概率分布律为
Y
=
X
2
Y=X^{2}
Y=X2,求
Y
Y
Y 的概率分布律。
X
−
1
0
1
P
0.1
0.6
0.3
\begin{array}{c|ccc} X & -1 & 0 & 1 \\ \hline P & 0.1 & 0.6 & 0.3 \end{array}
XP−10.100.610.3
解: 由题意可知, X X X 的可能取值为 -1, 0, 1。而 Y = X 2 Y=X^{2} Y=X2,所以可知 Y Y Y 可能取值为 0 和 1。
又因为 Y = X 2 Y=X^{2} Y=X2,从而 { Y = 0 } = { X = 0 } , { Y = 1 } = { ( X = 1 ) ⋃ ( X = − 1 ) } \{Y=0\}=\{X=0\},\{Y=1\}=\{(X=1)\bigcup(X=-1)\} {Y=0}={X=0},{Y=1}={(X=1)⋃(X=−1)}
因此 P ( Y = 0 ) = P ( X = 0 ) = 0.6 P(Y=0)=P(X=0)=0.6 P(Y=0)=P(X=0)=0.6
P ( Y = 1 ) = { P ( X = 1 ) ⋃ P ( X = − 1 ) } = P ( X = 1 ) + P ( X = − 1 ) = 0.4 P(Y=1) = \{P(X=1) \bigcup P(X=-1)\} = P(X=1) + P(X=-1)=0.4 P(Y=1)={P(X=1)⋃P(X=−1)}=P(X=1)+P(X=−1)=0.4
Y Y Y 的概率分布律如下:
X 0 1 Y 0.6 0.4 \begin{array}{c|cc} X & 0 & 1 \\ \hline Y & 0.6 & 0.4 \end{array} XY00.610.4
例 2: 设随机变量 X 的概率密度函数为
f X ( x ) = { x 8 , 0 < x < 4 ; 0 , 其他 f_X(x)= \begin{cases} \cfrac{x}{8} ,& 0<x<4; \\ \\ 0, & \text{其他} \end{cases} fX(x)=⎩⎪⎪⎨⎪⎪⎧8x,0,0<x<4;其他
求 Y = X 2 Y=X^{2} Y=X2 的概率密度函数。
解: 由题意可知 P ( 0 < X < 4 ) = 1 P(0<X<4)=1 P(0<X<4)=1,从而 P ( 0 < Y < 16 ) = 1 P(0<Y<16)=1 P(0<Y<16)=1.
故 f Y ( y ) = 0 f_Y(y)=0 fY(y)=0,当 y ∉ ( 0.16 ) 时 . y\notin (0.16) 时. y∈/(0.16)时.
当 y ∈ ( 0 , 16 ) y\in (0,16) y∈(0,16) 时,先考察 Y Y Y 的分布函数:
F Y ( y ) = P { Y ≤ y } = P { X 2 ≤ y } = P { − y ≤ X ≤ y } = P { 0 ≤ X ≤ y } = ∫ 0 y t 8 d t = y 16 \begin{aligned} F_Y(y)=P\{Y\leq y\}&=P\{X^{2}\leq y\}=P\{-\sqrt y\leq X \leq \sqrt{y}\} \\ & =P\{0\leq X \leq \sqrt{y}\} = \int_{0}^{\sqrt{y}} \cfrac{t}{8} \, {\rm d}t = \cfrac{y}{16} \end{aligned} FY(y)=P{Y≤y}=P{X2≤y}=P{−y≤X≤y}=P{0≤X≤y}=∫0y8tdt=16y
∵ P { − y ≤ X < 0 } = 0 \because P\{-\sqrt{y} \leq X < 0\} = 0 ∵P{−y≤X<0}=0
∴ P { − y ≤ X ≤ y } = P { 0 ≤ X ≤ y } \therefore P\{-\sqrt y\leq X \leq \sqrt{y}\} =P\{0\leq X \leq \sqrt{y}\} ∴P{−y≤X≤y}=P{0≤X≤y}
故 f Y ( y ) = F Y ′ ( y ) = 1 16 . f_Y(y)=F'_Y(y)=\cfrac{1}{16}. fY(y)=FY′(y)=161.即 y y y 服从均匀分布 U ( 0 , 16 ) . U(0, 16). U(0,16).
或者 \quad
当 y ∈ ( 0 , 16 ) 时 y\in (0,16) 时 y∈(0,16)时,先考察 Y Y Y 的分布函数:
F Y ( y ) = P { Y ≤ y } = P { X 2 ≤ y } = P { − y ≤ X ≤ y } = P { X ≤ y } = F X ( y ) \begin{aligned} F_Y(y)=P\{Y\leq y\} &= P\{X^{2} \leq y\} = P\{-\sqrt{y}\leq X \leq \sqrt{y}\} \\ &= P\{X\leq \sqrt{y}\} = F_X(\sqrt{y}) \end{aligned} FY(y)=P{Y≤y}=P{X2≤y}=P{−y≤X≤y}=P{X≤y}=FX(y)
∵ P { X < − y } = 0. \because P\{X<-\sqrt{y}\}=0. ∵P{X<−y}=0.
∴ P { − y ≤ X ≤ y } = P { X ≤ y } \therefore P\{-\sqrt{y}\leq X \leq \sqrt{y}\} = P\{X\leq \sqrt{y}\} ∴P{−y≤X≤y}=P{X≤y}
故 f Y ( y ) = F X ′ ( y ) = f X ( y ) ⋅ 1 2 y = y 8 ⋅ 1 2 y = 1 16 . f_Y(y)=F'_X(\sqrt{y})=f_X(\sqrt{y})·\cfrac{1}{2\sqrt{y}} = \cfrac{\sqrt{y}}{8}·\cfrac{1}{2\sqrt{y}}=\cfrac{1}{16}. fY(y)=FX′(y)=fX(y)⋅2y1=8y⋅2y1=161.
即 Y Y Y 服从均匀分布 U ( 0 , 16 ) . U(0,16). U(0,16).
一般,若已知 X X X 的概率分布, Y = g ( X ) Y=g(X) Y=g(X) ,求 Y 的概率分布的过程为:先给出 Y Y Y 的可能取值;在利用等价事物来给出概率分布。
- 若 X X X 为离散型随机变量,则先写出 Y Y Y 的可能取值: y 1 , y 2 , ⋯ , y j , ⋯ ; y_1,y_2,\cdots,y_j,\cdots; y1,y2,⋯,yj,⋯;再找出 { Y = y j } \{Y=y_j\} {Y=yj}的等价事件 { X ∈ D } \{X\in D\} {X∈D},得 P ( Y = y j ) = P ( X ∈ D ) ; P(Y=y_j)=P(X\in D); P(Y=yj)=P(X∈D);
- 若 X X X 为连续型随机变量,先根据 X X X 的取值范围,给出 Y Y Y 的取值范围;然后写出 Y Y Y 的概率分布函数: F Y ( y ) = P ( Y ≤ y ) F_Y(y)=P(Y\leq y) FY(y)=P(Y≤y),找出 { Y ≤ y } \{Y\leq y\} {Y≤y} 的等价事件 { X ∈ D } \{X\in D\} {X∈D},得 F Y ( y ) = P ( X ∈ D ) F_Y(y)=P(X\in D) FY(y)=P(X∈D);再求出 Y Y Y 的概率密度函数 f Y ( y ) . f_Y(y). fY(y).
定理: 设随机变量 X ∼ f X ( x ) , − ∞ < x < + ∞ , Y = g ( X ) , g ′ ( x ) > 0 X\sim f_X(x), -\infty<x<+\infty,Y=g(X),g'(x)>0 X∼fX(x),−∞<x<+∞,Y=g(X),g′(x)>0 (或 g ′ ( ( x ) < 0 g'((x)<0 g′((x)<0),则 Y Y Y 具有概率密度为:
f Y ( y ) = { f X ( h ( y ) ) ⋅ ∣ h ′ ( y ) ∣ , α < y < β , 0 , 其他 . f_Y(y)= \begin{cases} f_X(h(y))·|h'(y)|, & \alpha < y < \beta, \\ \\ 0, & \text{其他}. \end{cases} fY(y)=⎩⎪⎨⎪⎧fX(h(y))⋅∣h′(y)∣,0,α<y<β,其他.
注意:
- 这里 ( α , β ) (\alpha, \beta) (α,β) 是 Y Y Y 的取值范围,其中: α = g ( − ∞ ) , β = g ( + ∞ ) . \alpha=g(-\infty), \beta=g(+\infty). α=g(−∞),β=g(+∞).当 g ′ ( x ) < 0 g'(x)<0 g′(x)<0 时, α = g ( + ∞ ) , β = g ( − ∞ ) \alpha=g(+\infty), \beta=g(-\infty) α=g(+∞),β=g(−∞)
- h 是 g 的反函数,即 h ( y ) = x ⟺ y = g ( x ) h(y)=x \iff y=g(x) h(y)=x⟺y=g(x).
例 3: 设 X ∼ N ( μ , σ 2 ) , Y = a X + b ( a ≠ b ) X\sim N(\mu,\sigma^{2}), Y=aX+b(a\neq b) X∼N(μ,σ2),Y=aX+b(a=b),求 Y Y Y 的概率密度 f Y ( y ) . f_Y(y). fY(y).
解: y = g ( x ) = a x + b , g ′ ( x ) = a ≠ 0 , y=g(x)=ax+b,g'(x)=a\neq 0, y=g(x)=ax+b,g′(x)=a=0,
x = h ( y ) = ( y − b ) / a , h ′ ( y ) = 1 / a , \quad \quad x = h(y)=(y-b)/a, h'(y)=1/a, x=h(y)=(y−b)/a,h′(y)=1/a,
f Y ( y ) = f X ( y − b a ) ⋅ 1 ∣ a ∣ = 1 2 π σ e x p [ − ( ( y − b ) / a − μ ) 2 σ 2 ] ⋅ 1 ∣ a ∣ = 1 2 π ∣ a ∣ σ e [ y − ( a μ + b ) ] 2 2 a 2 b 2 ⟹ Y ∼ N ( a μ + b , a 2 σ 2 ) \begin{aligned} f_Y(y)&=f_X\left(\cfrac{y-b}{a} \right)· \cfrac{1}{|a|}=\cfrac{1}{\sqrt{2\pi}\sigma} \, {\rm exp} \left[- \cfrac{\left((y-b)/a-\mu\right)}{2\sigma^{2}} \right] · \cfrac{1}{|a|} \\ &= \cfrac{1}{\sqrt{2\pi}|a|\sigma}\, e^{\cfrac{[y-(a\mu+b)]^{2}}{2a^{2}b^{2}}} \implies Y\sim N(a\mu+b,a^{2}\sigma^{2}) \end{aligned} fY(y)=fX(ay−b)⋅∣a∣1=2πσ1exp[−2σ2((y−b)/a−μ)]⋅∣a∣1=2π∣a∣σ1e2a2b2[y−(aμ+b)]2⟹Y∼N(aμ+b,a2σ2)
一般地,若随机变量 X ∼ N ( μ , σ 2 ) X\sim N(\mu, \sigma^{2}) X∼N(μ,σ2),则有 Y = a X + b ⟹ Y ∼ N ( a μ + b , a 2 σ 2 ) Y=aX+b \implies Y\sim N(a\mu+b,a^{2}\sigma^{2}) Y=aX+b⟹Y∼N(aμ+b,a2σ2)
例如:
X ∼ N ( 1 , 3 ) , Y = 3 − 2 X X\sim N(1,3), Y=3-2X X∼N(1,3),Y=3−2X
∵ a μ + b = − 2 × 1 + 3 = 1 \because a\mu+b = -2\times 1 + 3 = 1 ∵aμ+b=−2×1+3=1
a 2 σ 2 = ( − 2 ) 2 × 3 = 12 \quad a^{2}\sigma^{2}=(-2)^{2}\times 3 = 12 a2σ2=(−2)2×3=12
∴ Y ∼ N ( 1 , 12 ) \therefore Y\sim N(1,12) ∴Y∼N(1,12)