1030. 距离顺序排列矩阵单元格
题目来源:力扣(LeetCode)https://leetcode-cn.com/problems/matrix-cells-in-distance-order/
题目
给出 R
行 C
列的矩阵,其中的单元格的整数坐标为 (r, c)
,满足 0 <= r < R
且 0 <= c < C
。
另外,我们在该矩阵中给出了一个坐标为 (r0, c0)
的单元格。
返回矩阵中的所有单元格的坐标,并按到 (r0, c0)
的距离从最小到最大的顺序排,其中,两单元格(r1, c1)
和 (r2, c2)
之间的距离是曼哈顿距离,|r1 - r2| + |c1 - c2|
。(你可以按任何满足此条件的顺序返回答案。)
示例 1:
输入:R = 1, C = 2, r0 = 0, c0 = 0
输出:[[0,0],[0,1]]
解释:从 (r0, c0) 到其他单元格的距离为:[0,1]
示例 2:
输入:R = 2, C = 2, r0 = 0, c0 = 1
输出:[[0,1],[0,0],[1,1],[1,0]]
解释:从 (r0, c0) 到其他单元格的距离为:[0,1,1,2]
[[0,1],[1,1],[0,0],[1,0]] 也会被视作正确答案。
示例 3:
输入:R = 2, C = 3, r0 = 1, c0 = 2
输出:[[1,2],[0,2],[1,1],[0,1],[1,0],[0,0]]
解释:从 (r0, c0) 到其他单元格的距离为:[0,1,1,2,2,3]
其他满足题目要求的答案也会被视为正确,例如 [[1,2],[1,1],[0,2],[1,0],[0,1],[0,0]]。
提示:
1 <= R <= 100
1 <= C <= 100
0 <= r0 < R
0 <= c0 < C
解题思路
思路:直接排序、桶排序、BFS
先审题,本题题意弄清楚后,就会有直观的解法。
首先题目给出的 R R R 行 C C C 列的矩阵,其中:
- 矩阵中的单元格坐标为 ( r , c ) (r, c) (r,c),这里 0 ≤ r < R 0 \leq r < R 0≤r<R 且 0 ≤ c < C 0 \leq c < C 0≤c<C;
题目中还给出一个坐标为 ( r 0 , c 0 ) (r0, c0) (r0,c0) 的单元格。(这个单元格在给定的矩阵内,其实就是从矩阵中挑一个坐标)
现在题目要求的是返回矩阵所有单元格坐标,要求单元格坐标到 ( r 0 , c 0 ) (r0, c0) (r0,c0) 的距离大小顺序排列。其中这里的距离指的是曼哈顿距离。
在这里,假设存在两单元格
(
r
1
,
c
1
)
(r1, c1)
(r1,c1) 和
(
r
2
,
c
2
)
(r2, c2)
(r2,c2),那么两者之间的曼哈顿距离就是:
d
(
i
,
j
)
=
∣
r
1
−
r
2
∣
+
∣
c
1
−
c
2
∣
d(i, j) = |r1 - r2| + |c1 - c2|
d(i,j)=∣r1−r2∣+∣c1−c2∣
直接排序
那么,这里其实就是排序的问题。只不过排序规则是:根据点到点之间的曼哈顿距离大小进行排序。
这里,先说下直接排序的方法:
- 先将矩阵中所有的单元格坐标都存储在列表中;
- 然后进行排序,这里的排序规则则改成按照所有单元格坐标到给定的 ( r 0 , c 0 ) (r0, c0) (r0,c0) 单元格的曼哈顿距离大小升序排序。
具体的代码实现如下。
class Solution:
def allCellsDistOrder(self, R: int, C: int, r0: int, c0: int) -> List[List[int]]:
# 先将所有的坐标都放到列表中
res = [(r, c) for r in range(R) for c in range(C)]
# 改变排序的规则,根据曼哈顿距离的大小排序
res.sort(key=lambda x: abs(x[0] - r0) + abs(x[1] - c0))
return res
桶排序
上面的直接排序的思路,首先需要先将所有的坐标点都放到列表中,然后再进行排序,时间复杂度较高。
这里我们可以使用桶排序,根据曼哈顿距离,将坐标放到对应的桶中。具体的思路如下:
- 首先先求得坐标之间的最大曼哈顿距离;(见示例,坐标之间的距离列表中,可能存在相同的距离,但会有一个最大的距离。)
- 根据求得的最大曼哈顿距离,确定桶的数量。根据曼哈顿距离分桶,相同的放到同个桶中;
- 最后,将桶中的坐标,根据距离大小添加到结果列表中。
具体的代码实现如下。
class Solution:
def allCellsDistOrder(self, R: int, C: int, r0: int, c0: int) -> List[List[int]]:
def get_d(r, c, r0, c0):
"""求曼哈顿距离
"""
return abs(r-r0) + abs(c-c0)
# 确定曼哈顿距离的最大值,进而确定桶数量
max_d = max(r0, R - 1 - r0) + max(c0, C - 1 - c0)
# 初始化桶,遍历将坐标放入根据曼哈顿距离放到对应的桶中
bucket = {}
for r in range(R):
for c in range(C):
d = get_d(r, c, r0, c0)
if d not in bucket:
bucket[d] = []
bucket[d].append([r, c])
# 将桶中元素添加到结果列表中
res = []
for i in range(max_d+1):
res.extend(bucket[i])
return res
BFS
这里,我们也可以用 BFS 的思路来实现。具体的思路如下:
- 以给定的坐标 ( r 0 , c 0 ) (r0, c0) (r0,c0) 作为起始点,出队,开始往四周的坐标点进行扩散;
- 扩散时,需要注意边界问题,以及是否被扩散访问过;
- 这里入队列,是根据曼哈顿距离从小到大进行入队。
具体的代码实现如下。
class Solution:
def allCellsDistOrder(self, R: int, C: int, r0: int, c0: int) -> List[List[int]]:
# 四个方位
dire = [(-1, 0), (0, 1), (1, 0), (0, -1)]
# 标记是否已经被扩散访问过
signed = [[False] * C for _ in range(R)]
queue = collections.deque()
# 添加起始点
queue.append([r0, c0])
# 标记已扩散
signed[r0][c0] = True
res = []
while queue:
# 出列,准备扩散
cur = queue.popleft()
res.append(cur)
r, c = cur
# 开始往四周扩散
for _ in range(4):
for i, j in dire:
nr = r + i
nc = c + j
# 注意边界,以及是否被扩散访问过
if 0 <= nr < R and 0 <= nc < C and not signed[nr][nc]:
queue.append([nr, nc])
signed[nr][nc] = True
return res
欢迎关注
公众号 【书所集录】
如有错误,烦请指出,欢迎指点交流。