机器学习-sklearn第五天——笔记

sklearn中的逻辑回归

1 概述

1.1 名为“回归”的分类器

在过去的课程中,我们接触了不少带“回归”二字的算法,回归树,随机森林的回归,无一例外他们都是区别于分类算法们,用来处理和预测连续型标签的算法。然而逻辑回归,是一种名为“回归”的线性分类器,其本质是由线性回归变化而来的,一种广泛使用于分类问题中的广义回归算法。要理解逻辑回归从何而来,得要先理解线性回归。线性回归是机器学习中最简单的的回归算法,它写作一个几乎人人熟悉的方程:
在这里插入图片描述

1.2 为什么需要逻辑回归

线性回归对数据的要求很严格,比如标签必须满足正态分布,特征之间的多重共线性需要消除等等,而现实中很多真实情景的数据无法满足这些要求,因此线性回归在很多现实情境的应用效果有限。逻辑回归是由线性回归变化而来,因此它对数据也有一些要求,而我们之前已经学过了强大的分类模型决策树和随机森林,它们的分类效力很强,并且不需要对数据做任何预处理。
但是,无论机器学习领域如何折腾,逻辑回归依然是一个受工业商业热爱,使用广泛的模型,因为它有着不可替代的优点:

  1. 逻辑回归对线性关系的拟合效果好到丧心病狂,特征与标签之间的线性关系极强的数据,比如金融领域中的信用卡欺诈,评分卡制作,电商中的营销预测等等相关的数据,都是逻辑回归的强项。虽然现在有了梯度提升树GDBT,比逻辑回归效果更好,也被许多数据咨询公司启用,但逻辑回归在金融领域,尤其是银行业中的统治地位依然不可动摇(相对的,逻辑回归在非线性数据的效果很多时候比瞎猜还不如,所以如果你已经知道数据之间的联系是非线性的,千万不要迷信逻辑回归)
  2. 逻辑回归计算快:对于线性数据,逻辑回归的拟合和计算都非常快,计算效率优于SVM和随机森林,亲测表示在大型数据上尤其能够看得出区别
  3. 逻辑回归返回的分类结果不是固定的0,1,而是以小数形式呈现的类概率数字:我们因此可以把逻辑回归返回的结果当成连续型数据来利用。比如在评分卡制作时,我们不仅需要判断客户是否会违约,还需要给出确定的”信用分“,而这个信用分的计算就需要使用类概率计算出的对数几率,而决策树和随机森林这样的分类器,可以产出分类结果,却无法帮助我们计算分数(当然,在sklearn中,决策树也可以产生概率,使用接口predict_proba调用就好,但一般来说,正常的决策树没有这个功能)。

1.3 sklearn中的逻辑回归

在这里插入图片描述
在这里插入图片描述

2 linear_model.LogisticRegression

class sklearn.linear_model.LogisticRegression (penalty=’l2’, dual=False, tol=0.0001, C=1.0,
fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver=’warn’, max_iter=100,
multi_class=’warn’, verbose=0, warm_start=False, n_jobs=None)

2.1 二元逻辑回归的损失函数

2.1.1 损失函数的概念与解惑

在学习决策树和随机森林时,我们曾经提到过两种模型表现:在训练集上的表现,和在测试集上的表现。我们建模,是追求模型在测试集上的表现最优,因此模型的评估指标往往是用来衡量模型在测试集上的表现的。然而,逻辑回归有着基于训练数据求解参数 的需求,并且希望训练出来的模型能够尽可能地拟合训练数据,即模型在训练集上的预测准确率越靠近100%越好。
因此,我们使用”损失函数“这个评估指标,来衡量参数为 的模型拟合训练集时产生的信息损失的大小,并以此衡量参数 的优劣。如果用一组参数建模后,模型在训练集上表现良好,那我们就说模型拟合过程中的损失很小,损失函数的值很小,这一组参数就优秀;相反,如果模型在训练集上表现糟糕,损失函数就会很大,模型就训练不足,效果较差,这一组参数也就比较差。即是说,我们在求解参数 时,追求损失函数最小,让模型在训练数据上的拟合效果最优,即预测准确率尽量靠近100%
在这里插入图片描述

2.2 重要参数penalty & C

2.2.1 正则化

正则化是用来防止模型过拟合的过程,常用的有L1正则化和L2正则化两种选项,分别通过在损失函数后加上参数向量 的L1范式和L2范式的倍数来实现。这个增加的范式,被称为“正则项”,也被称为"惩罚项"。损失函数改变,基于损失函数的最优化来求解的参数取值必然改变,我们以此来调节模型拟合的程度。其中L1范式表现为参数向量中的每个参数的绝对值之和,L2范数表现为参数向量中的每个参数的平方和的开方值。
在这里插入图片描述

其中J(θ) 是我们之前提过的损失函数,C是用来控制正则化程度的超参数,n是方程中特征的总数,也是方程中参
数的总数,j代表每个参数。在这里,j要大于等于1,是因为我们的参数向量 中,第一个参数是 ,是我们的截距,它通常是不参与正则化的。在许多书籍和博客中,大家可能也会见到如下的写法
在这里插入图片描述

L1正则化和L2正则化虽然都可以控制过拟合,但它们的效果并不相同。当正则化强度逐渐增大(即C逐渐变小),参数 的取值会逐渐变小,但L1正则化会将参数压缩为0,L2正则化只会让参数尽量小,不会取到0。 在L1正则化在逐渐加强的过程中,携带信息量小的、对模型贡献不大的特征的参数,会比携带大量信息的、对模型有巨大贡献的特征的参数更快地变成0,所以L1正则化本质是一个特征选择的过程,掌管了参数的“稀疏性”。L1正则化越强,参数向量中就越多的参数为0,参数就越稀疏,选出来的特征就越少,以此来防止过拟合。因此,如果特征量很大,数据维度很高,我们会倾向于使用L1正则化。由于L1正则化的这个性质,逻辑回归的特征选择可以由
Embedded嵌入法来完成。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

可见,至少在我们的乳腺癌数据集下,两种正则化的结果区别不大。但随着C的逐渐变大,正则化的强度越来越小,模型在训练集和测试集上的表现都呈上升趋势,直到C=0.8左右,训练集上的表现依然在走高,但模型在未知数据集上的表现开始下跌,这时候就是出现了过拟合。我们可以认为,C设定为0.8会比较好。在实际使用时,基本就默认使用l2正则化,如果感觉到模型的效果不好,那就换L1试试看

2.2.2 逻辑回归中的特征工程

当特征的数量很多的时候,我们出于业务考虑,也出于计算量的考虑,希望对逻辑回归进行特征选择来降维。比如,在判断一个人是否会患乳腺癌的时候,医生如果看5~8个指标来确诊,会比需要看30个指标来确诊容易得多。业务选择说到降维和特征选择,首先要想到的是利用自己的业务能力进行选择,肉眼可见明显和标签有关的特征就是需要留下的。当然,如果我们并不了解业务,或者有成千上万的特征,那我们也可以使用算法来帮助我们。或者,可以让算法先帮助我们筛选过一遍特征,然后在少量的特征中,我们再根据业务常识来选择更少量的特征。PCA和SVD一般不用说到降维,我们首先想到的是之前提过的高效降维算法,PCA和SVD,遗憾的是,这两种方法大多数时候不适用于逻辑回归。逻辑回归是由线性回归演变而来,线性回归的一个核心目的是通过求解参数来探究特征X与标签y之间的关系,而逻辑回归也传承了这个性质,我们常常希望通过逻辑回归的结果,来判断什么样的特征与分类结果相关,因此我们希望保留特征的原貌。PCA和SVD的降维结果是不可解释的,因此一旦降维后,我们就无法解释特征和标签之间的关系了。当然,在不需要探究特征与标签之间关系的线性数据上,降维算法PCA和SVD也是可以使用的。统计方法可以使用,但不是非常必要
既然降维算法不能使用,我们要用的就是特征选择方法。逻辑回归对数据的要求低于线性回归,由于我们不是使用最小二乘法来求解,所以逻辑回归对数据的总体分布和方差没有要求,也不需要排除特征之间的共线性,但如果我们确实希望使用一些统计方法,比如方差,卡方,互信息等方法来做特征选择,也并没有问题。过滤法中所有的方法,都可以用在逻辑回归上。
高效的嵌入法embedded

在这里插入图片描述

看看结果,特征数量被减小到个位数,并且模型的效果却没有下降太多,如果我们要求不高,在这里其实就可以停下了。但是,能否让模型的拟合效果更好呢?在这里,我们有两种调整方式:
1)调节SelectFromModel这个类中的参数threshold,这是嵌入法的阈值,表示删除所有参数的绝对值低于这个阈值的特征。现在threshold默认为None,所以SelectFromModel只根据L1正则化的结果来选择了特征,即选择了所有L1正则化后参数不为0的特征。我们此时,只要调整threshold的值(画出threshold的学习曲线),就可以观察不同的threshold下模型的效果如何变化。一旦调整threshold,就不是在使用L1正则化选择特征,而是使用模型的属性.coef_中生成的各个特征的系数来选择。coef_虽然返回的是特征的系数,但是系数的大小和决策树中的feature_ importances_以及降维算法中的可解释性方差explained_vairance_概念相似,其实都是衡量特征的重要程度和贡献度的,因此SelectFromModel中的参数threshold可以设置为coef_的阈值,即可以剔除系数小于
threshold中输入的数字的所有特征。
在这里插入图片描述
在这里插入图片描述

2)第二种调整方法,是调逻辑回归的类LR_,通过画C的学习曲线来实现:

在这里插入图片描述

继续细化学习曲线:
在这里插入图片描述

2.3 梯度下降:重要参数max_iter

逻辑回归的数学目的是求解能够让模型最优化,拟合程度最好的参数 的值,即求解能够让损失函数 最小化的值。对于二元逻辑回归来说,有多种方法可以用来求解参数 ,最常见的有梯度下降法(Gradient Descent),坐标下降法(Coordinate Descent),牛顿法(Newton-Raphson method)等,其中又以梯度下降法最为著名。每种方法都涉及复杂的数学原理,但这些计算在执行的任务其实是类似的。

2.3.1 梯度下降求解逻辑回归

在这里插入图片描述

可以看见,小球从高处滑落,在深蓝色的区域中来回震荡,最终停留在了图像凹陷处的某个点上。非常明显,我们可以观察到几个现象:
首先,小球并不是一开始就直向着最低点去的,它先一口气冲到了蓝色区域边缘,后来又折回来,我们已经规定了小球是多次滚动,所以可见,小球每次滚动的方向都是不同的。另外,小球在进入深蓝色区域后,并没有直接找到某个点,而是在深蓝色区域中来回震荡了数次才停下。这有两种可能:1) 小球已经滚到了图像的最低点,所以停下了,2) 由于我设定的步数限制,小球还没有找到最低点,但也只好在100步的时候停下了。也就是说,小球不一定滚到了图像的最低处。

2.3.2 梯度下降的概念与解惑

核心误区:到底在哪个函数上,求什么的偏导数?
注意,在一些博客或教材中,讲解梯度向量的定义时会写一些让人容易误解的句子,比如“对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度”。注意,这种解释一眼看上去没错,却是不太严谨的。
一个多元函数的梯度,是对其自变量求偏导的结果,不是对其参数求偏导的结果。但是在逻辑回归的数学过程中,损失函数的自变量刚好是逻辑回归的预测函数y(x)的参数,所以才造成了这种让人误解的,“对多元函数的参数求偏导”的写法。务必记住,正确的做法是:在多元函数(损失函数)上对自变量(逻辑回归的预测函数y(x)的参数)求偏导,求解梯度的方式,和逻辑回归本身的预测函数y(x)没有一丝联系。
在这里插入图片描述

2.3.3 步长的概念与解惑

步长不是任何物理距离,它甚至不是梯度下降过程中任何距离的直接变化,它是梯度向量的大小 d上的一个比例,影响着参数向量 θ每次迭代后改变的部分。
在这里插入图片描述
在这里插入图片描述

2.4 二元回归与多元回归

重要参数solver & multi_class
之前我们对逻辑回归的讨论,都是针对二分类的逻辑回归展开,其实sklearn提供了多种可以使用逻辑回归处理多分类问题的选项。比如说,我们可以把某种分类类型都看作1,其余的分类类型都为0值,和”数据预处理“中的二值化的思维类似,这种方法被称为"一对多"(One-vs-rest),简称OvR,在sklearn中表示为“ovr"。又或者,我们可以把好几个分类类型划为1,剩下的几个分类类型划为0值,这是一种”多对多“(Many-vs-Many)的方法,简称MvM,在
sklearn中表示为"Multinominal"。每种方式都配合L1或L2正则项来使用。在sklearn中,我们使用参数multi_class来告诉模型,我们的预测标签是什么样的类型。
我们之前提到的梯度下降法,只是求解逻辑回归参数 的一种方法,并且我们只讲解了求解二分类变量的参数时的各种原理。sklearn为我们提供了多种选择,让我们可以使用不同的求解器来计算逻辑回归。求解器的选择,由参数"solver"控制,共有五种选择。其中“liblinear”是二分类专用,也是现在的默认求解器。
在这里插入图片描述

来看看鸢尾花数据集上,multinomial和ovr的区别怎么样:
在这里插入图片描述

2.5 样本不平衡与参数class_weight

样本不平衡是指在一组数据集中,标签的一类天生占有很大的比例,或误分类的代价很高,即我们想要捕捉出某种特定的分类的时候的状况。什么情况下误分类的代价很高?例如,我们现在要对潜在犯罪者和普通人进行分类,如果没有能够识别出潜在犯罪者,那么这些人就可能去危害社会,造成犯罪,识别失败的代价会非常高,但如果,我们将普通人错误地识别成了潜在犯罪者,代价却相对较小。所以我们宁愿将普通人分类为潜在犯罪者后再人工甄别,但是却不愿将潜在犯罪者分类为普通人,有种"宁愿错杀不能放过"的感觉。
再比如说,在银行要判断“一个新客户是否会违约”,通常不违约的人vs违约的人会是99:1的比例,真正违约的人其实是非常少的。这种分类状况下,即便模型什么也不做,全把所有人都当成不会违约的人,正确率也能有99%,这使得模型评估指标变得毫无意义,根本无法达到我们的“要识别出会违约的人”的建模目的。

因此我们要使用参数class_weight对样本标签进行一定的均衡,给少量的标签更多的权重,让模型更偏向少数类,向捕获少数类的方向建模。该参数默认None,此模式表示自动给与数据集中的所有标签相同的权重,即自动1: 1。当误分类的代价很高的时候,我们使用”balanced“模式,我们只是希望对标签进行均衡的时候,什么都不填就可以解决样本不均衡问题。
但是,sklearn当中的参数class_weight变幻莫测,大家用模型跑一跑就会发现,我们很难去找出这个参数引导的模型趋势,或者画出学习曲线来评估参数的效果,因此可以说是非常难用。我们有着处理样本不均衡的各种方法,其中主流的是采样法,是通过重复样本的方式来平衡标签,可以进行上采样(增加少数类的样本),比如SMOTE,
或者下采样(减少多数类的样本)。对于逻辑回归来说,上采样是最好的办法。在案例中,会给大家详细来讲如何在逻辑回归中使用上采样。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值