机器学习-sklearn第十八天——笔记

XGBoost(下)

4 XGBoost应用中的其他问题

4.1 过拟合:剪枝参数与回归模型调参

class xgboost.XGBRegressor (max_depth=3, learning_rate=0.1, n_estimators=100, silent=True,
objective=‘reg:linear’, booster=‘gbtree’, n_jobs=1, nthread=None, gamma=0, min_child_weight=1,
max_delta_step=0, subsample=1, colsample_bytree=1, colsample_bylevel=1, reg_alpha=0, reg_lambda=1,
scale_pos_weight=1, base_score=0.5, random_state=0, seed=None, missing=None, importance_type=‘gain’, kwargs)
作为天生过拟合的模型,XGBoost应用的核心之一就是减轻过拟合带来的影响。作为树模型,减轻过拟合的方式主要是靠对决策树剪枝来降低模型的复杂度,以求降低方差。在之前的讲解中,我们已经学习了好几个可以用来防止过拟合的参数,包括上一节提到的复杂度控制 ,正则化的两个参数 和 ,控制迭代速度的参数 以及管理每次迭代前进行的随机有放回抽样的参数subsample。所有的这些参数都可以用来减轻过拟合。但除此之外,我们还有几个影响重大的,专用于剪枝的参数:
在这里插入图片描述

这些参数中,树的最大深度是决策树中的剪枝法宝,算是最常用的剪枝参数,不过在XGBoost中,最大深度的功能与参数 相似,因此如果先调节了 ,则最大深度可能无法展示出巨大的效果。当然,如果先调整了最大深度,则 也有可能无法显示明显的效果。通常来说,这两个参数中我们只使用一个,不过两个都试试也没有坏处。三个随机抽样特征的参数中,前两个比较常用。在建立树时对特征进行抽样其实是决策树和随机森林中比较常见的一种方法,但是在XGBoost之前,这种方法并没有被使用到boosting算法当中过。Boosting算法一直以抽取样本(横向抽样)来调整模型过拟合的程度,而实践证明其实纵向抽样(抽取特征)更能够防止过拟合。参数min_child_weight不太常用,它是一篇叶子上的二阶导数 之和,当样本所对应的二阶导数很小时,比如说为0.01,min_child_weight若设定为1,则说明一片叶子上至少需要100个样本。本质上来说,这个参数其实是在控制叶子上所需的最小样本量,因此对于样本量很大的数据会比较有效。如果样本量很小(比如我们现在使用的波士顿房价数据集,则这个参数效用不大)。就剪枝的效果来说,这个参数的功能也被 替代了一部分,通常来说我们会试试看这个参数,但这个参数不是我的优先选择。
在这里插入图片描述
在这里插入图片描述

从曲线上可以看出,模型现在处于过拟合的状态。我们决定要进行剪枝。我们的目标是:训练集和测试集的结果尽量接近,如果测试集上的结果不能上升,那训练集上的结果降下来也是不错的选择(让模型不那么具体到训练数据,增加泛化能力)。在这里,我们要使用三组曲线。一组用于展示原始数据上的结果,一组用于展示上一个参数调节完毕后的结果,最后一组用于展示现在我们在调节的参数的结果。具体怎样使用,我们来看:

param1 = {'silent':True
          ,'obj':'reg:linear'
          ,"subsample":1
          ,"max_depth":6
          ,"eta":0.3
          ,"gamma":0
          ,"lambda":1
          ,"alpha":0
          ,"colsample_bytree":1
          ,"colsample_bylevel":1
          ,"colsample_bynode":1
          ,"nfold":5}
num_round = 200

time0 = time()
cvresult1 = xgb.cv(param1, dfull, num_round)
print(datetime.datetime.fromtimestamp(time()-time0).strftime("%M:%S:%f"))

fig,ax = plt.subplots(1,figsize=(15,8))
ax.set_ylim(top=5)
ax.grid()
ax.plot(range(1,201),cvresult1.iloc[:,0],c="red",label="train,original")
ax.plot(range(1,201),cvresult1.iloc[:,2],c="orange",label="test,original")

param2 = {'silent':True
          ,'obj':'reg:linear'
          ,"max_depth":2
          ,"eta":0.05
          ,"gamma":0
          ,"lambda":1
          ,"alpha":0
          ,"colsample_bytree":1
          ,"colsample_bylevel":0.4
          ,"colsample_bynode":1
          ,"nfold":5}

param3 = {'silent':True
          ,'obj':'reg:linear'
          ,"subsample":1
          ,"eta":0.05
          ,"gamma":20
          ,"lambda":3.5
          ,"alpha":0.2
          ,"max_depth":4
          ,"colsample_bytree":0.4
          ,"colsample_bylevel":0.6
          ,"colsample_bynode":1
          ,"nfold":5}

time0 = time()
cvresult2 = xgb.cv(param2, dfull, num_round)
print(datetime.datetime.fromtimestamp(time()-time0).strftime("%M:%S:%f"))

time0 = time()
cvresult3 = xgb.cv(param3, dfull, num_round)
print(datetime.datetime.fromtimestamp(time()-time0).strftime("%M:%S:%f"))

ax.plot(range(1,201),cvresult2.iloc[:,0],c="green",label="train,last")
ax.plot(range(1,201),cvresult2.iloc[:,2],c="blue",label="test,last")
ax.plot(range(1,201),cvresult3.iloc[:,0],c="gray",label="train,this")
ax.plot(range(1,201),cvresult3.iloc[:,2],c="pink",label="test,this")
ax.legend(fontsize="xx-large")
plt.show()

在这里插入图片描述

4.2 XGBoost模型的保存和调用

在使用Python进行编程时,我们可能会需要编写较为复杂的程序或者建立复杂的模型。比如XGBoost模型,这个模型的参数复杂繁多,并且调参过程不是太容易,一旦训练完毕,我们往往希望将训练完毕后的模型保存下来,以便日后用于新的数据集。在Python中,保存模型的方法有许多种。我们以XGBoost为例,来讲解两种主要的模型保存和调用方法。

4.2.1 使用Pickle保存和调用模型

pickle是python编程中比较标准的一个保存和调用模型的库,我们可以使用pickle和open函数的连用,来将我们的模型保存到本地。以刚才我们已经调整好的参数和训练好的模型为例,我们可以这样来使用pickle:

import pickle
dtrain = xgb.DMatrix(Xtrain,Ytrain) #设定参数,对模型进行训练
param = {'silent':True
         ,'obj':'reg:linear'
         ,"subsample":1
         ,"eta":0.05
         ,"gamma":20
         ,"lambda":3.5
         ,"alpha":0.2
         ,"max_depth":4
         ,"colsample_bytree":0.4
         ,"colsample_bylevel":0.6
         ,"colsample_bynode":1}
num_round = 180
bst = xgb.train(param, dtrain, num_round) #保存模型
pickle.dump(bst, open("xgboostonboston.dat","wb"))
#注意,open中我们往往使用w或者r作为读取的模式,但其实w与r只能用于文本文件,当我们希望导入的不是文本文件,而
是模型本身的时候,我们使用"wb""rb"作为读取的模式。其中wb表示以二进制写入,rb表示以二进制读入
#看看模型被保存到了哪里?
import sys
sys.path
#重新打开jupyter lab
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split as TTS
from sklearn.metrics import mean_squared_error as MSE
import pickle
import xgboost as xgb
data = load_boston()
X = data.data
y = data.target
Xtrain,Xtest,Ytrain,Ytest = TTS(X,y,test_size=0.3,random_state=420) #注意,如果我们保存的模型是xgboost库中建立的模型,则导入的数据类型也必须是xgboost库中的数据类型
dtest = xgb.DMatrix(Xtest,Ytest) #导入模型
loaded_model = pickle.load(open("xgboostonboston.dat", "rb"))
print("Loaded model from: xgboostonboston.dat") #做预测
ypreds = loaded_model.predict(dtest)
from sklearn.metrics import mean_squared_error as MSE, r2_score
MSE(Ytest,ypreds)
r2_score(Ytest,ypreds)
4.2.2 使用Joblib保存和调用模型

Joblib是SciPy生态系统中的一部分,它为Python提供保存和调用管道和对象的功能,处理NumPy结构的数据尤其高效,对于很大的数据集和巨大的模型非常有用。Joblib与pickle API非常相似,来看看代码:

bst = xgb.train(param, dtrain, num_round)
import joblib
#同样可以看看模型被保存到了哪里
joblib.dump(bst,"xgboost-boston.dat")
loaded_model = joblib.load("xgboost-boston.dat")
ypreds = loaded_model.predict(dtest)
MSE(Ytest, ypreds)
r2_score(Ytest,ypreds) #使用sklearn中的模型
from xgboost import XGBRegressor as XGBR
bst = XGBR(n_estimators=200
           ,eta=0.05,gamma=20
           ,reg_lambda=3.5
           ,reg_alpha=0.2
           ,max_depth=4
           ,colsample_bytree=0.4
           ,colsample_bylevel=0.6).fit(Xtrain,Ytrain)
joblib.dump(bst,"xgboost-boston.dat")
loaded_model = joblib.load("xgboost-boston.dat") #则这里可以直接导入Xtest
ypreds = loaded_model.predict(Xtest)
MSE(Ytest, ypreds)

在这里插入图片描述

4.3 分类案例:XGB中的样本不均衡问题

在之前的学习中,我们一直以回归作为演示的例子,这是由于回归是XGB的常用领域的缘故。然而作为机器学习中的大头,分类算法也是不可忽视的,XGB作为分类的例子自然也是非常多。存在分类,就会存在样本不平衡问题带来的影响,XGB中存在着调节样本不平衡的参数scale_pos_weight,这个参数非常类似于之前随机森林和支持向量机中我们都使用到过的class_weight参数,通常我们在参数中输入的是负样本量与正样本量之比
在这里插入图片描述
在这里插入图片描述

  1. 导库,创建样本不均衡的数据集
    在这里插入图片描述

  2. 在数据集上建模:sklearn模式

在这里插入图片描述

  1. 在数据集上建模:xgboost模式
    在这里插入图片描述
    在这里插入图片描述

4.4 XGBoost类中的其他参数和功能

到目前为止,我们已经讲解了XGBoost类中的大部分参数和功能。这些参数和功能主要覆盖了XGBoost中的梯度提升树的原理以及XGBoost自身所带的一些特性。还有一些其他的参数和用法,是算法实际应用时需要考虑的问题。接下来,我们就来看看这些参数。

在这里插入图片描述

更多计算资源:n_jobs
nthread和n_jobs都是算法运行所使用的线程,与sklearn中规则一样,输入整数表示使用的线程,输入-1表示使用计算机全部的计算资源。如果我们的数据量很大,则我们可能需要这个参数来为我们调用更多线程。

降低学习难度:base_score
base_score是一个比较容易被混淆的参数,它被叫做全局偏差,在分类问题中,它是我们希望关注的分类的先验概率。比如说,如果我们有1000个样本,其中300个正样本,700个负样本,则base_score就是0.3。对于回归来说,这个分数默认0.5,但其实这个分数在这种情况下并不有效。许多使用XGBoost的人已经提出,当使用回归的时候
base_score的默认应该是标签的均值,不过现在xgboost库尚未对此做出改进。使用这个参数,我们便是在告诉模型一些我们了解但模型不一定能够从数据中学习到的信息。通常我们不会使用这个参数,但对于严重的样本不均衡问题,设置一个正确的base_score取值是很有必要的。

生成树的随机模式:random_state
在xgb库和sklearn中,都存在空值生成树的随机模式的参数random_state。在之前的剪枝中,我们提到可以通过随机抽样样本,随机抽样特征来减轻过拟合的影响,我们可以通过其他参数来影响随机抽样的比例,却无法对随机抽样干涉更多,因此,真正的随机性还是由模型自己生成的。如果希望控制这种随机性,可以在random_state参数中输入固定整数。需要注意的是,xgb库和sklearn库中,在random_state参数中输入同一个整数未必表示同一个随机模式,不一定会得到相同的结果,因此导致模型的feature_importances也会不一致。

自动处理缺失值:missing
XGBoost被设计成是能够自动处理缺失值的模型,这个设计的初衷其实是为了让XGBoost能够处理稀疏矩阵。我们可以在参数missing中输入一个对象,比如np.nan,或数据的任意取值,表示将所有含有这个对象的数据作为空值处理。XGBoost会将所有的空值当作稀疏矩阵中的0来进行处理,因此在使用XGBoost的时候,我们也可以不处理缺失值。当然,通常来说,如果我们了解业务并且了解缺失值的来源,我们还是希望手动填补缺失值。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值