深度学习(八)Theory behind GAN——笔记

Theory behind GAN

在这里插入图片描述

1.Maximum Likelihood Estimation

最大似然估计,从 Pdata​(x) 抽样出一些样本,计算它的likelihood
在这里插入图片描述

2.MLE=Minimize KL Divergence

先假定一个具体的分布去逼近实际分布,需要一个通用的分布,去逼近这个复杂的图像真实分布。因此要用GAN的Generator来解决这个问题。
在这里插入图片描述

3.Generator

从一个简单的分布中得到出样本,然后用generator,然后得到输出,把这些输出统统集合起来
在这里插入图片描述

4.Discriminator

在这里插入图片描述

我们可以用Discriminator来区分两个Distribution。如果两个分布的数据很接近(small divergence),那么Discriminator很难把数据分开,也就是上面的公式很难找到一个D,使得D*取得很大的值。那么就找到最大的divergence,使得两个分布的数据相隔远一些,我们的Discriminator就能容易的将数据分开。
在这里插入图片描述

5.GD Algorithm for GAN

首先固定生成器,然后固定D,不停的迭代
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6.Algorithm for GAN

首先train判别器,实际上没办法train到收敛,可以定义训练k次;之后train生成器:update一次就好
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值