目录
Theory behind GAN
1.Maximum Likelihood Estimation
最大似然估计,从 Pdata(x) 抽样出一些样本,计算它的likelihood
2.MLE=Minimize KL Divergence
先假定一个具体的分布去逼近实际分布,需要一个通用的分布,去逼近这个复杂的图像真实分布。因此要用GAN的Generator来解决这个问题。
3.Generator
从一个简单的分布中得到出样本,然后用generator,然后得到输出,把这些输出统统集合起来
4.Discriminator
我们可以用Discriminator来区分两个Distribution。如果两个分布的数据很接近(small divergence),那么Discriminator很难把数据分开,也就是上面的公式很难找到一个D,使得D*取得很大的值。那么就找到最大的divergence,使得两个分布的数据相隔远一些,我们的Discriminator就能容易的将数据分开。
5.GD Algorithm for GAN
首先固定生成器,然后固定D,不停的迭代
6.Algorithm for GAN
首先train判别器,实际上没办法train到收敛,可以定义训练k次;之后train生成器:update一次就好