Pandas之文件读取与存储


我们的数据大部分存在于文件当中,因此pandas会支持复杂的IO操作,pandas的API支持众多的文件格式,例如CSV,SQL,XLS,JSON,HDF5。

注:最常用的HDF5和CSV文件

在这里插入图片描述

1 CSV

1.1 read_csv

  • pandas.read_csv(filepath_or_buffer,sep =’,’)
    • filepath_or_buffer:文件路径
    • usecols:指定重新读取的列名,列表形式

读取之前的股票的数据

# 读取文件,并且指定只获取'open', 'close'指标
data = pd.read_csv("./data/stock_day.csv", usecols=['open', 'close'])

            open    high    close
2018-02-27    23.53    25.88    24.16
2018-02-26    22.80    23.78    23.53
2018-02-23    22.88    23.37    22.82
2018-02-22    22.25    22.76    22.28
2018-02-14    21.49    21.99    21.92

1.2 to_csv

  • DataFrame.to_csv(path_or_buf =无,sep =’,’,列=无,标头=真,索引=真,模式=‘w’,编码=无)
    • path_or_buf:文件路径
    • sep:分隔符,默认用“,”替换
    • 列:选择需要的列索引
    • header:布尔值或字符串列表,默认为True,是否写进列索引值
    • index:是否写进行索引
    • 模式:‘w’:重组,'a’追加

1.3案例

保存’open’列的数据

# 选取10行数据保存,便于观察数据
data[:10].to_csv("./data/test.csv", columns=['open'])

读取,查看结果

pd.read_csv("./data/test.csv")

     Unnamed: 0    open
0    2018-02-27    23.53
1    2018-02-26    22.80
2    2018-02-23    22.88
3    2018-02-22    22.25
4    2018-02-14    21.49
5    2018-02-13    21.40
6    2018-02-12    20.70
7    2018-02-09    21.20
8    2018-02-08    21.79
9    2018-02-07    22.69

会发现将索引存入到文件当中,变成单独的一列数据。如果需要删除,可以指定索引参数,删除原来的文件,重新保存一次。

# index:存储不会讲索引值变成一列数据
data[:10].to_csv("./data/test.csv", columns=['open'], index=False)

2 HDF5

2.1 read_hdf与to_hdf

HDF5文件的读取和存储需要指定一个键,估计要存储的DataFrame

  • pandas.read_hdf(path_or_buf,key = None,** kwargs)

  • 从h5文件当中读取数据

    • path_or_buffer:文件路径
    • key:读取的键
    • 返回:所选对象
  • DataFrame.to_hdf(path_or_buf,key,* \ kwargs *)

2.2案例

读取文件

day_eps_ttm = pd.read_hdf("./data/stock_data/day/day_eps_ttm.h5")

如果读取的时候出现以下错误
在这里插入图片描述

需要安装表格模块避免不能读取HDF5文件

pip install tables

在这里插入图片描述

  • 存储文件
day_eps_ttm.to_hdf("./data/test.h5", key="day_eps_ttm")
  • 再次读取的时候,需要指定键的名字
new_eps = pd.read_hdf("./data/test.h5", key="day_eps_ttm")

3 JSON

JSON是我们常用的一种数据交换格式,前面在前面的交互经常用到,也会在存储的时候选择这种格式。所以我们需要知道Pandas如何进行读取和存储JSON格式。

3.1 read_json

  • pandas.read_json(path_or_buf = None,orient = None,typ =‘frame’,lines = False)
    • 将JSON格式准换成默认的Pandas DataFrame格式
    • orient:string,预期的JSON字符串格式的指示。
      • ‘split’:像{index->​​ [index],columns-> [columns],data-> [values]}之类的字典
        • split将索引总结到索引,列名到列名,数据到数据。将三部分都分开了
      • ‘records’:类似于[{column-> value},…,{column-> value}]的列表
        • 记录以columns:values的形式输出
      • ‘index’:类似{index->​​ {column-> value}}的字典
        • index以index:{columns:values}…的形式输出
      • ‘columns’:类似{column-> { index- > value}}的字典,该格式
        • 列以columns:{index:values}的形式输出
      • ‘values’:仅是values数组
        • 直接输出值
    • lines:布尔值,默认为False
    • 按照每行读取json对象
    • typ:默认为’frame’,指定转换成的对象类型系列或dataframe

3.2 read_josn案例

  • 数据介绍
这里使用一个新闻标题讽刺数据集,格式为JSON。is_sarcastic:1讽刺的,否则为0; headline:新闻报道的标题; article_link:链接到原始新闻文章存储格式为:
{"article_link": "https://www.huffingtonpost.com/entry/versace-black-code_us_5861fbefe4b0de3a08f600d5", "headline": "former versace store clerk sues over secret 'black code' for minority shoppers", "is_sarcastic": 0}
{"article_link": "https://www.huffingtonpost.com/entry/roseanne-revival-review_us_5ab3a497e4b054d118e04365", "headline": "the 'roseanne' revival catches up to our thorny political mood, for better and worse", "is_sarcastic": 0}
  • 读取
    orient指定存储的json格式,行指定跟随行去变成一个样本
json_read = pd.read_json("./data/Sarcasm_Headlines_Dataset.json", orient="records", lines=True)

结果为:

在这里插入图片描述

3.3 to_json

  • DataFrame.to_json(path_or_buf = None,orient = None,lines = False)
    • 将Pandas对象存储为json格式
    • path_or_buf =无:文件地址
    • orient:存储的json形式,{‘split’,‘records’,‘index’,‘columns’,‘values’}
    • 行:一个对象存储为一行

3.4案例

  • 存储文件
json_read.to_json("./data/test.json", orient='records')
[{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/versace-black-code_us_5861fbefe4b0de3a08f600d5","headline":"former versace store clerk sues over secret 'black code' for minority shoppers","is_sarcastic":0},{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/roseanne-revival-review_us_5ab3a497e4b054d118e04365","headline":"the 'roseanne' revival catches up to our thorny political mood, for better and worse","is_sarcastic":0},{"article_link":"https:\/\/local.theonion.com\/mom-starting-to-fear-son-s-web-series-closest-thing-she-1819576697","headline":"mom starting to fear son's web series closest thing she will have to grandchild","is_sarcastic":1},{"article_link":"https:\/\/politics.theonion.com\/boehner-just-wants-wife-to-listen-not-come-up-with-alt-1819574302","headline":"boehner just wants wife to listen, not come up with alternative debt-reduction ideas","is_sarcastic":1},{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/jk-rowling-wishes-snape-happy-birthday_us_569117c4e4b0cad15e64fdcb","headline":"j.k. rowling wishes snape happy birthday in the most magical way","is_sarcastic":0},{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/advancing-the-worlds-women_b_6810038.html","headline":"advancing the world's women","is_sarcastic":0},....]
  • 修改lines参数为True
json_read.to_json("./data/test.json", orient='records', lines=True)

结果

{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/versace-black-code_us_5861fbefe4b0de3a08f600d5","headline":"former versace store clerk sues over secret 'black code' for minority shoppers","is_sarcastic":0}
{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/roseanne-revival-review_us_5ab3a497e4b054d118e04365","headline":"the 'roseanne' revival catches up to our thorny political mood, for better and worse","is_sarcastic":0}
{"article_link":"https:\/\/local.theonion.com\/mom-starting-to-fear-son-s-web-series-closest-thing-she-1819576697","headline":"mom starting to fear son's web series closest thing she will have to grandchild","is_sarcastic":1}
{"article_link":"https:\/\/politics.theonion.com\/boehner-just-wants-wife-to-listen-not-come-up-with-alt-1819574302","headline":"boehner just wants wife to listen, not come up with alternative debt-reduction ideas","is_sarcastic":1}
{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/jk-rowling-wishes-snape-happy-birthday_us_569117c4e4b0cad15e64fdcb","headline":"j.k. rowling wishes snape happy birthday in the most magical way","is_sarcastic":0}...

优先选择使用HDF5文件存储

  • HDF5在存储的时候支持压缩,使用的方式是blosc,这个是速度驱动的也是pandas替代支持的
  • 使用压缩可以提磁盘优化,节省空间
  • HDF5还是跨平台的,可以轻松迁移到hadoop上面
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值