NODIECANFLY 2020-9-24
分类专栏: 图像质量评价 深度学习
Jinjian Wu, et al, “End-to-End Blind Image Quality Prediction with Cascaded Deep Neural Network”, IEEE Transactions on Image Processing, Early Access, June. 2020. https://web.xidian.edu.cn/wjj/paper.html.查阅
标题
基于级联深度神经网络别的段单端图像质量预测[TOC]
Abstract
深度卷积神经网络(CNN)在图像识别方面取得了很大的成功。 许多图像质量评估(IQA)方法直接使用面向识别的CNN进行质量预测。 然而,IQA任务的性质与图像识别任务不同。 图像识别应对视觉内容敏感,对失真具有鲁棒性,而IQA对失真和视觉内容都敏感。本文针对盲图像质量评价(BIQA),提出了一种面向IQA的CNN方法,该方法能有效地表示质量的下降。 CNN是大数据驱动的,而现有IQA数据库的大小太小,无法进行CNN优化。 因此,首先建立了一个大型IQA数据集, 其中包括100多万张失真图像(每幅图像都有一个质量分数作为平均意见分数(MOS)的替代,缩写为伪MOS)。 其次,在人类视觉系统中的层次感知机制(从局部结构到全局语义)的启发下,设计了一种新的以IQA为导向的CNN方法, 其中考虑了层次退化。 最后,通过在端到端框架中联合优化多级特征提取、层次退化级联(HDC)和质量预测,实现了级联 ,并介绍了带有HDC的级联CNN(称为CaHDC)。在基准IQA数据库上的实验表明,与现有的BIQA方法相比,CaHDC具有优越性。 同时,与其他基于CNN的BIQA模型相比,CaHDC(约0.73M参数)是轻量级的,在微处理系统中可以很容易地实现。 该方法的数据集和源代码可在https://web.xidian.edu.cn/wjj/paper.html.查阅
一、介绍
本文是在受到人类视觉系统中层次感知机制(从局部结构到全局语义)的启发,设计了一种新的面向IQA 的CNN方法,该方法考虑了层次退化问题。然后通过对多级特征提取、层次退化拼接(HDC)和端到端质量预测的联合优化,提出了一种基于层次退化拼接的级联CNN。虽然CaHDC只有少量的参数,但仍保持高性能,大大减轻了过拟合。
本文的贡献:1)为了解决训练数据有限的问题,建立了一个大规模的质量注释数据集,该数据集的视觉内容具有很大的多样性和失真性。 我们提出的