hands-on-data-analysis-数据建模及模型评估

第三章 模型搭建和评估–建模

经过前面的两章的知识点的学习,我可以对数数据的本身进行处理,比如数据本身的增删查补,还可以做必要的清洗工作。那么下面我们就要开始使用我们前面处理好的数据了。这一章我们要做的就是使用数据,我们做数据分析的目的也就是,运用我们的数据以及结合我的业务来得到某些我们需要知道的结果。那么分析的第一步就是建模,搭建一个预测模型或者其他模型;我们从这个模型的到结果之后,我们要分析我的模型是不是足够的可靠,那我就需要评估这个模型。今天我们学习建模,下一节我们学习评估。

我们拥有的泰坦尼克号的数据集,那么我们这次的目的就是,完成泰坦尼克号存活预测这个任务。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from IPython.display import Image
%matplotlib inline
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.figsize'] = (10, 6)  # 设置输出图片大小

载入我们提供清洗之后的数据(clear_data.csv),大家也将原始数据载入(train.csv),说说他们有什么不同

plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.figsize'] = (10, 6)  # 设置输出图片大小
# 读取原数据数集
train = pd.read_csv('train.csv')
train.shape
train.head()

在这里插入图片描述

#读取清洗过的数据集
data = pd.read_csv('clear_data.csv')
data.head()

在这里插入图片描述

模型搭建

  • 处理完前面的数据我们就得到建模数据,下一步是选择合适模型
  • 在进行模型选择之前我们需要先知道数据集最终是进行监督学习还是无监督学习
  • 模型的选择一方面是通过我们的任务来决定的。
  • 除了根据我们任务来选择模型外,还可以根据数据样本量以及特征的稀疏性来决定
  • 刚开始我们总是先尝试使用一个基本的模型来作为其baseline,进而再训练其他模型做对比,最终选择泛化能力或性能比较好的模型

这里我的建模,并不是从零开始,自己一个人完成完成所有代码的编译。我们这里使用一个机器学习最常用的一个库(sklearn)来完成我们的模型的搭建

下面给出sklearn的算法选择路径,供大家参考

# sklearn模型算法选择路径图
Image('sklearn.png')

在这里插入图片描述

任务一:切割训练集和测试集

这里使用留出法划分数据集

  • 将数据集分为自变量和因变量
  • 按比例切割训练集和测试集(一般测试集的比例有30%、25%、20%、15%和10%)
  • 使用分层抽样
  • 设置随机种子以便结果能复现

【思考】

  • 划分数据集的方法有哪些?
  • 为什么使用分层抽样,这样的好处有什么?

train_split方法:
1) 导入包:
from sklearn.model_selection import
train_test_split
2)函数介绍:
train_split(*arrays, test_size, train_size, random_state, shuffle, stratify)
3)参数介绍:
a. *arrays:
b. test_size: 测试集占总数据集的比例,默认为0.25
c. train_size: 训练集占总数据集的比例,默认为None,表示总体数据集除去测试集的部分
d. random_state: (其他参数都相同时)只有设为1时,每次运行时划分的测试集与训练集都一样;设为0或不设置,每次划分的都不一样。
e. shuffle:boolean类型,默认为True,表示在切割数据集之前是否要打乱数据。当shuffle=False时,stratify必须为None。
f. stratify: 默认为None,当值不是None时,代表数据集会以一种分层的方式被切割。
ShuffleSplit方法:
1)导入包:
from sklearn.model_selection import ShuffleSplit
2)函数介绍: ShuffleSplit(n_splits=10,test_size=’default’, train_size=None, random_state=None)
3)参数介绍:
a. n_splits: 代表划分训练集、测试集的次数,默认为10
b. test_size: 测试集占总数据集的比例,默认为0.1
c. train_size: 训练集占总数据集的比例,默认为None,表示总体数据集除去测试集的部分
d. random_state: (其他参数都相同时)只有设为1时,每次运行时划分的测试集与训练集都一样;设为0或不设置,每次划分的都不一样。
4)举例说明:
`rs = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
1
n_splits=5代表5次,test_size=0.2代表5折,因此上述为5次5折交叉验证

分层抽样,即先将所有个体样本按照某种特征划分为几个类别,然后从每个类别中使用随机抽样或等距抽样的方法选择个体组成样本。
分层抽样能明显的降低抽样误差,并且便于针对不同类别的数据样本进行单独研究,因此是一种较好的实现方法。
该方法适用于带有分类逻辑的属性、标签等特征的数据

任务提示1

  • 切割数据集是为了后续能评估模型泛化能力
  • sklearn中切割数据集的方法为train_test_split
  • 查看函数文档可以在jupyter noteboo里面使用train_test_split?后回车即可看到
  • 分层和随机种子在参数里寻找
from sklearn.model_selection import train_test_split
# 一般先取出X和y后再切割,有些情况会使用到未切割的,这时候X和y就可以用,x是清洗好的数据,y是我们要预测的存活数据'Survived'
X = data
y = train['Survived']
# 对数据集进行切割
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=0)
# 查看数据形状
X_train.shape, X_test.shape

【思考】

什么情况下切割数据集的时候不用进行随机选取

在数据集本身已经是随机处理之后的,或者说数据集非常大,内部已经足够随机了

任务二:模型创建

  • 创建基于线性模型的分类模型(逻辑回归)
  • 创建基于树的分类模型(决策树、随机森林)
  • 分别使用这些模型进行训练,分别的到训练集和测试集的得分
  • 查看模型的参数,并更改参数值,观察模型变化

提示2

  • 逻辑回归不是回归模型而是分类模型,不要与LinearRegression混淆
  • 随机森林其实是决策树集成为了降低决策树过拟合的情况
  • 线性模型所在的模块为sklearn.linear_model
  • 树模型所在的模块为sklearn.ensemble
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
# 默认参数逻辑回归模型
lr = LogisticRegression()
lr.fit(X_train, y_train)
# 查看训练集和测试集score值
print("Training set score: {:.2f}".format(lr.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(lr.score(X_test, y_test)))

Training set score: 0.81
Testing set score: 0.79

# 调整参数后的逻辑回归模型
lr2 = LogisticRegression(C=100)
lr2.fit(X_train, y_train)
print("Training set score: {:.2f}".format(lr2.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(lr2.score(X_test, y_test)))
# 默认参数的随机森林分类模型
rfc = RandomForestClassifier()
rfc.fit(X_train, y_train)
print("Training set score: {:.2f}".format(rfc.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(rfc.score(X_test, y_test)))
# 调整参数后的随机森林分类模型
rfc2 = RandomForestClassifier(n_estimators=100, max_depth=5)
rfc2.fit(X_train, y_train)
print("Training set score: {:.2f}".format(rfc2.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(rfc2.score(X_test, y_test)))

Training set score: 0.86
Testing set score: 0.81

【思考】

为什么线性模型可以进行分类任务,背后是怎么的数学关系
对于多分类问题,线性模型是怎么进行分类的
将线性模型用于 多分类问题

任务三:输出模型预测结果

  • 输出模型预测分类标签
  • 输出不同分类标签的预测概率
    提示3
  • 一般监督模型在sklearn里面有个predict能输出预测标签,predict_proba则可以输出标签概率
# 预测标签
pred = lr.predict(X_train)
# 此时我们可以看到0和1的数组
pred[:10]
# 预测标签概率
pred_proba = lr.predict_proba(X_train)
pred_proba[:10]

【思考】

预测标签的概率对我们有什么帮助

模型评估

模型评估是为了知道模型的泛化能力。
交叉验证(cross-validation)是一种评估泛化性能的统计学方法,它比单次划分训练集和测试集的方法更加稳定、全面。
在交叉验证中,数据被多次划分,并且需要训练多个模型。
最常用的交叉验证是 k 折交叉验证(k-fold cross-validation),其中 k 是由用户指定的数字,通常取 5 或 10。
准确率(precision)度量的是被预测为正例的样本中有多少是真正的正例
召回率(recall)度量的是正类样本中有多少被预测为正类
f-分数是准确率与召回率的调和平均
【思考】:将上面的概念进一步的理解,大家可以做一下总结

任务一:交叉验证

用10折交叉验证来评估之前的逻辑回归模型
计算交叉验证精度的平均值

#提示:交叉验证
Image('Snipaste_2020-01-05_16-37-56.png')

在这里插入图片描述
提示4

  • 交叉验证在sklearn中的模块为sklearn.model_selection
from sklearn.model_selection import cross_val_score
lr = LogisticRegression(C=100)
scores = cross_val_score(lr, X_train, y_train, cv=10)
# k折交叉验证分数
scores
# 平均交叉验证分数
print("Average cross-validation score: {:.2f}".format(scores.mean()))

思考4
k折越多的情况下会带来什么样的影响?
k折交叉验证

任务二:混淆矩阵

  • 计算二分类问题的混淆矩阵
  • 计算精确率、召回率以及f-分数
    【思考】什么是二分类问题的混淆矩阵,理解这个概念,知道它主要是运算到什么任务中的
#提示:混淆矩阵
Image('Snipaste_2020-01-05_16-38-26.png')

在这里插入图片描述

#提示:准确率 (Accuracy),精确度(Precision),Recall,f-分数计算方法
Image('Snipaste_2020-01-05_16-39-27.png')

在这里插入图片描述
提示5

  • 混淆矩阵的方法在sklearn中的sklearn.metrics模块
  • 混淆矩阵需要输入真实标签和预测标签
  • 精确率、召回率以及f-分数可使用classification_report模块
from sklearn.metrics import confusion_matrix
# 训练模型
lr = LogisticRegression(C=100)
lr.fit(X_train, y_train)
# 模型预测结果
pred = lr.predict(X_train)
# 混淆矩阵
confusion_matrix(y_train, pred)
from sklearn.metrics import classification_report
# 精确率、召回率以及f1-score
print(classification_report(y_train, pred))

任务三:ROC曲线

绘制ROC曲线
【思考】什么是OCR曲线,OCR曲线的存在是为了解决什么问题?

  • ROC曲线在sklearn中的模块为sklearn.metrics
  • ROC曲线下面所包围的面积越大越好
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y_test, lr.decision_function(X_test))
plt.plot(fpr, tpr, label="ROC Curve")
plt.xlabel("FPR")
plt.ylabel("TPR (recall)")
# 找到最接近于0的阈值
close_zero = np.argmin(np.abs(thresholds))
plt.plot(fpr[close_zero], tpr[close_zero], 'o', markersize=10, label="threshold zero", fillstyle="none", c='k', mew=2)
plt.legend(loc=4)

在这里插入图片描述

思考6
对于多分类问题如何绘制ROC曲线

对于多分类问题,ROC曲线的获取主要有两种方法:
假设测试样本个数为m,类别个数为n。在训练完成后,计算出每个测试样本的在各类别下的概率或置信度,得到一个[m, n]形状的矩阵P,每一行表示一个测试样本在各类别下概率值(按类别标签排序)。相应地,将每个测试样本的标签转换为类似二进制的形式,每个位置用来标记是否属于对应的类别(也按标签排序,这样才和前面对应),由此也可以获得一个[m, n]的标签矩阵L。
①方法一:每种类别下,都可以得到m个测试样本为该类别的概率(矩阵P中的列)。所以,根据概率矩阵P和标签矩阵L中对应的每一列,可以计算出各个阈值下的假正例率(FPR)和真正例率(TPR),从而绘制出一条ROC曲线。这样总共可以绘制出n条ROC曲线。最后对n条ROC曲线取平均,即可得到最终的ROC曲线。
②方法二:
首先,对于一个测试样本:1)标签只由0和1组成,1的位置表明了它的类别(可对应二分类问题中的‘’正’’),0就表示其他类别(‘’负‘’);2)要是分类器对该测试样本分类正确,则该样本标签中1对应的位置在概率矩阵P中的值是大于0对应的位置的概率值的。基于这两点,将标签矩阵L和概率矩阵P分别按行展开,转置后形成两列,这就得到了一个二分类的结果。所以,此方法经过计算后可以直接得到最终的ROC曲线。
上面的两个方法得到的ROC曲线是不同的,当然曲线下的面积AUC也是不一样的。 在python中,方法1和方法2分别对应sklearn.metrics.roc_auc_score函数中参数average值为’macro’和’micro’的情况。下面参考sklearn官网提供的例子,对两种方法进行实现。



【思考】你能从这条OCR曲线的到什么信息?这些信息可以做什么?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值