WhaleQuant第四章——量化选股策略

第四章

4.0 学习资源

学习链接

1. 市场有效性理论:

  • 描述了证券市场的四种有效性类型:无效市场、弱式有效市场、半强式有效市场和强式有效市场。
  • 讨论了有效市场理论对投资者选股策略的影响,特别是在短期和长期市场中,市场无效性可能为投资者提供超额收益的机会。

2. 效用模型与风险模型:

  • 介绍了效用函数(Utility Function)和期望效用假说(Expected Utility Hypothesis),以及它们在投资者决策中的应用。
  • 讨论了损失厌恶(Loss Aversion)现象,即投资者对损失的厌恶程度大于对同等金额收益的喜好。

3. 现代资产配置理论(MPT):

  • 描述了MPT的核心思想,即通过最小化标准差并最大化预期收益来进行资产配置。
  • 解释了有效前沿(Efficient Frontier)、夏普比率(Sharpe Ratio)和资本市场线(Capital Allocation Line)的概念。

4. 资本资产定价模型(CAPM):

  • 介绍了CAPM模型,它基于MPT,描述了资产收益率与市场风险之间的关系。
  • 讨论了系统性风险(Systematic Risk)和非系统性风险(Unsystematic Risk)的区别。

5. 套利定价理论(APT)与多因子模型:

  • APT模型将资产收益归因于多个因子,而不仅仅是市场风险。
  • 多因子模型(MFM)是APT模型的扩展,它通过多个因子来解释股票的预期收益。

6. 量化因子构建:

  • 介绍了基于日频数据和高频数据的量化因子构建方法。
  • 讨论了如何通过计算机语言来描述和实现量化计算过程。

7. 因子有效性检验:

  • 介绍了如何通过统计方法(如p值)来检验因子的有效性。
  • 讨论了市值中性化和行业中性化的概念,以及它们在因子分析中的应用。

8. 多因子选股模型实践:

  • 提供了一个使用Python实现的简单多因子选股模型示例,该模型通过线性回归来预测股票收益,并根据预测结果选择股票。
  • 这一章节为投资者提供了一套系统的方法论,用于在量化投资中构建和评估选股策略。通过理解和应用这些理论,投资者可以更科学地进行资产配置,提高投资决策的效率和效果。

4.1 行业与市值中性化——程序1

import numpy as np
import pandas as pd
import statsmodels.api as sm

# 假设我们有一个包含市值因子和收益的数据框 DataFrame
# 数据框的列包括:'日期'、'股票代码'、'市值'、'收益'等

# 假设我们已经从数据源加载了数据,存储在变量 data 中

# 选择所需的列
data = data[['日期', '股票代码', '市值', '收益']]

# 根据日期进行分组
groups = data.groupby('日期')

# 定义一个函数来执行市值中性化
def market_neutralize(group):
    # 提取市值和收益的数据列
    market_cap = group['市值']
    returns = group['收益']

    # 添加截距项
    X = sm.add_constant(market_cap)

    # 执行线性回归,拟合收益率与市值的关系
    model = sm.OLS(returns, X)
    results = model.fit()

    # 提取回归系数
    beta = results.params['市值']

    # 计算市值中性化后的收益
    neutralized_returns =<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值