🌟作者简介:热爱数据分析,学习Python、Stata、SPSS等统计语言的小高同学~
🍊个人主页:小高要坚强的博客
🍓当前专栏:《Python之量化交易》
🍎本文内容:量化选股:原理与实战指南(二)
🌸作者“三要”格言:要坚强、要努力、要学习
目录
引言
量化选股是通过数学模型和数据分析从大量股票中筛选出具有投资潜力的股票组合,帮助投资者实现收益最大化。在股票市场中,量化选股已经成为越来越多投资者和基金经理的主要选股策略。本文将详细介绍量化选股中常用的价值类因子,如市净率、市销率、市盈率等,并通过Python代码示例,展示如何通过量化因子进行选股。
一、价值类因子简介
在量化选股中,价值类因子是评估股票投资价值的核心指标。这些因子基于公司的财务数据,反映股票价格与公司财务表现之间的关系。常用的价值类因子包括:
- 市净率(P/B Ratio):反映股票价格相对公司每股净资产的比率。
- 市销率(P/S Ratio):反映股票价格相对公司每股销售额的比率。
- 市盈率(P/E Ratio):反映股票价格相对公司每股收益的比率。
- 市现率(P/CF Ratio):反映股票价格相对每股现金流的比率。
通过这些因子,投资者可以评估股票的市场估值,并通过筛选具有较低估值的股票,寻找潜在的投资机会。
二、市净率(P/B Ratio)
1. 定义与解释
市净率(P/B Ratio):表示的是股票的市场价格与公司每股净资产之间的比率。它的计算公式如下:
市净率=每股股价/每股净资产
市净率用于衡量股票价格是否被高估或低估。一般来说,市净率越低,股票的投资价值越高,因为低市净率表明投资者为每单位资产支付的价格较低。但同时也需要结合公司经营状况、市场环境等多方面因素进行分析。
2. 代码示例:筛选市净率小于0.8的股票
from jqdatasdk import * # 引入聚宽数据SDK
auth('your_username', 'your_password') # 用户认证
# 查询市净率小于0.8的股票
q = query(valuation).filter(valuation.pb_ratio < 0.8)
df = get_fundamentals(q)
# 输出符合条件的股票代码
print(df["code"])
三、市销率(P/S Ratio)
1.定义与解释
市销率(P/S Ratio)表示股票的市场价格与公司每股销售额之间的比率。其计算公式如下:
市销率=每股股价/每股销售额
市销率反映了公司销售收入和市场估值之间的关系。一般情况下,市销率越低,表明投资者为公司的销售收入支付的价格越低,因此公司被低估的可能性越大。
2. 代码示例:筛选市销率小于0.4的股票
# 查询市销率小于0.4的股票
q = query(valuation).filter(valuation.ps_ratio < 0.4)
df = get_fundamentals(q)
# 输出符合条件的股票代码
print(df["code"])
四、市盈率(P/E Ratio)
1. 定义与解释
市盈率(P/E Ratio)是股票价格与每股收益的比率,是股票估值的一个重要指标。其计算公式为:
市盈率=股价/每股收益
市盈率可以分为静态市盈率和动态市盈率。静态市盈率使用当前的每股收益计算,而动态市盈率则基于对未来每股收益的预测。市盈率较低的股票通常被认为具有较高的投资价值,因为投资者为每单位利润支付的价格较低。
2. 代码示例:筛选静态市盈率在4到5之间的股票
# 查询静态市盈率大于4且小于5的股票
q = query(valuation).filter(valuation.pe_ratio_lyr > 4, valuation.pe_ratio_lyr < 5)
df = get_fundamentals(q)
# 输出符合条件的股票代码
print(df['code'])
3. 代码示例:筛选动态市盈率小于6的股票
# 查询动态市盈率小于6的股票
q = query(valuation).filter(valuation.pe_ratio < 6)
df = get_fundamentals(q)
# 输出符合条件的股票代码
print(df['code'])
五、市现率(P/CF Ratio)
1. 定义与解释
市现率(P/CF Ratio)是每股股价与每股现金流之间的比率,反映公司实际获得现金流的能力。其计算公式为:
市现率=股价/每股现金流
市现率能够有效地评估公司经营中的现金流状况。如果市现率较低,表明公司现金流充裕,经营压力小;反之,市现率过高表明公司可能面临短期资金压力。
2. 代码示例:筛选市现率小于0.6的股票
# 查询市现率小于0.6的股票
q = query(valuation).filter(valuation.pcf_ratio < 0.6)
df = get_fundamentals(q)
# 输出符合条件的股票代码
print(df['code'])
六、综合量化选股
在实际操作中,量化选股往往需要综合多个因子,以筛选出符合多种条件的优质股票。例如,我们可以根据换手率、资产负债情况、现金流量以及净利润等多个指标进行综合选股。
1. 代码示例:综合量化选股
我们可以结合以下选股条件:
- 换手率大于20;
- 流动资产合计大于流动负债合计;
- 经营活动现金流入大于经营活动现金流出;
- 净利润大于20000元;
- 销售毛利率大于15%。
# 综合多因子选股
q = query(indicator).filter(
# 换手率大于20
valuation.turnover_ratio > 20,
# 流动资产大于流动负债
balance.total_current_assets > balance.total_current_liability,
# 经营活动现金流入大于流出
cash_flow.subtotal_operate_cash_inflow > cash_flow.subtotal_operate_cash_outflow,
# 净利润大于20000元
income.net_profit > 20000,
# 销售毛利率大于15%
indicator.gross_profit_margin > 15
)
df = get_fundamentals(q)
# 输出符合条件的股票代码
print(df['code'])
七、总结
量化选股通过多个财务因子来评估股票的投资价值,不仅能够提升选股的科学性,还能帮助投资者发现潜在的投资机会。在本文中,我们介绍了市净率、市销率、市盈率和市现率等重要的价值类因子,并通过代码展示了如何使用这些因子筛选股票。在实际操作中,投资者可以根据自己的投资风格和市场情况,自由组合多个因子,进行更加复杂的选股操作。
关于文章有何疑问,欢迎到评论区留言,共同讨论~
往期回归:
Pandas与JQData在量化投资中的应用:数据获取与处理函数详解
码字艰辛,本篇内容就分享至此,如果渴望深入了解更多Python在量化交易的应用,别忘了点击关注博主,引导你从零开始探索Python在统计分析上的奥秘。同时,对于在数据分析与量化交易旅程中感到迷茫的朋友们,欢迎浏览我的专题系列:《Python之量化交易》,让我们一起努力坚强学习,共同进步吧~