【mindspore】【Loss模块】关于nn.SoftmaxCrossEntropyWithLogits的疑惑

问题描述:

nn.SoftmaxCrossEntropyWithLogits

【操作步骤&问题现象】

使用nn.SoftmaxCrossEntropyWithLogits 这个loss时,发现模型输出为80个类的logits,而数据集提供的label类别有400个,依然可以使用model.train训练,这是正常的么?不应该是logits和label的类别数量不一致然后无法训练么?还是说它会对logits进行补0?

解答:

nn.SoftmaxCrossEntropyWithLogits API文档里没有要求输入shape一致。从官网例子来看,sparse为True时,logits shape为(N, C),labels shape为(N)

比较与tf.nn.softmax_cross_entropy_with_logits的功能差异 — MindSpore master documentation

这里比较了该算子与TensorFlow的差异

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值