Copyright © 1999-2020, CSDN.NET, All Rights Reserved
文章目录
CNN(卷积神经网络)介绍
常见相关名词的英语
构建CNN模型!!!!!!!
代码构建
训练代码
卷积神经网络常见层
CNN(卷积神经网络)介绍
精度和速度比传统计算学习方法高很多
在计算机领域,CNN是解决图像分类,图像检索物体检测,语义分割的主流模型
CNN每一层有众多的卷积核组成,每个卷积核对输入的像素进行卷积操作得到下一次输入
约等于降维吧,变小了
在这里插入图片描述
CNN是一种层次模型,由卷积,池化,非线性激活函数和全连接层构成。
CNN训练原理:通过多次卷积和池化,CNN的最后一层将输入的 图像像素 映射为具体的输出。
如在 分类任务 中会转换为 不同类别的概率 输出,然后计算真实标签与CNN模型的预测结果的差异,并通过 反向传播 更新每层的参数,并在更新完成后再次前向传播,如此反复直到训练完成 。
常见相关名词的英语
卷积(convolution)、
池化(pooling)、
非线性激活函数(non-linear activation function)
全连接层(fully connected layer)
构建CNN模型!!!!!!!
Pytrch中构建CNN只需要定义好模型的参数和正向传播即可,Pytorch会根据正向传播自动计算反向传播,