POI推荐文献阅读笔记3:Predicting Human Mobility via Graph Convolutional Dual-attentive Networks

1.摘要

人类移动性预测对于智能交通和个性化推荐系统等各种应用具有重要意义。尽管许多传统的基于模式的方法和基于深度模型的(比如循环神经网络)方法已经被开发出来用于该任务,但它们本质上并不能很好地处理轨迹数据的稀疏性和不准确性以及序列依赖的复杂高阶性质,而这些都是移动性预测中的典型挑战。针对上述问题,本文提出了一种新颖的图卷积双注意力网络( Graph Convolutional Dual-attentive Networks,GCDAN )框架,该框架由时空嵌入和轨迹编解码两个模块组成。第一个模块使用双向扩散图卷积来保持位置嵌入中的空间依赖性。第二个模块使用了基于序列到序列架构的双注意力机制,以有效地提取轨迹内的长序列依赖关系和不同轨迹之间的相关性,从而进行预测。在三个真实数据集上的大量实验表明,与最先进的baseline相比,GCDAN获得了显著的性能增益。

2.贡献

1、据我们所知,我们是最早引入图卷积和双注意力机制来处理轨迹数据的稀疏性和不准确性以及人类移动预测问题中的高阶序列性的。
2、我们提出了一个新的移动性预测框架GCDAN,它由两个模块组成。第一个模块通过同时保留轨迹的空间依赖性和时间特性来学习轨迹位置的稠密表示。在此基础上,第二个模块进一步采用了序列到序列的架构,该架构充分考虑了复杂的序列依赖和用户偏好,在历史轨迹的指导下预测下一个位置
3、我们在三个真实的数据集(包括两个常用的数据集和一个新收集的数据集)上进行了广泛的实验,以评估所提出的框架的有效性。结果表明,GCDAN始终优于最先进的baseline。此外,我们公开发布了收集的数据集,作为移动预测问题的新基准,该数据集记录了一个最大的校园无线网络中的用户移动轨迹。

3.模型分析

3.1问题公式化

定义1(时空点): L = { l 1 , . . . . . . , l ∣ L ∣ } L = \lbrace l_1,......,l_{|L|}\rbrace L={ l1,......lL}定义为地点标识符的集合,那么对于一个时空点 p = ( l , t ) p=(l,t) p=(l,t)意思是一个用户到达在t时间到达l地点。
定义2(轨迹): U = { u 1 , . . . . . . , u ∣ U ∣ } U = \lbrace u_1,......,u_{|U|}\rbrace U={ u1,......uU}定义为用户的集合。对于一个用户u∈U其一个按时间排序的时空点序列 T u = p u 1 p u 2 p u 3 . . . p u m T_u=p^1_{u}p^2_{u}p^3_{u}...p^m_{u} Tu=pu1pu2pu3...pum, p u i p^i_{u} pui表示在轨迹 T u T_u Tu的第i个时空点。当然每个用户不同的轨迹的长度可能是不同的。
对于一个用户u∈U, S u = { T u 1 , T u 2 , T u 3 . . . T u ∣ S u ∣ } S_u=\lbrace T^1_{u}, T^2_{u},T^3_{u}...T^{|S_u|}_{u}\rbrace Su={ Tu1,Tu2,Tu3...TuSu}定义为其历史轨迹的集合,同时 T u ∼ = p u 1 p u 2 p u 3 . . . p u m {\overset{\thicksim}{ {T}_{u}}}=p^1_{u}p^2_{u}p^3_{u}...p^m_{u} Tu=pu1pu2

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值