Predicting Human Mobility via Graph Convolutional Dual-attentive Networks

人类移动性预测对于智能交通、个性化推荐系统等具有重要意义。虽然有许多传统的基于模式的方法和深度模型(𝑒.𝑔。基于循环神经网络(recurrent neural networks,简称rnn)的轨迹预测方法不能很好地解决轨迹数据的稀疏性、不精确性以及序列依赖的高阶特性,这些是移动预测的典型挑战。针对上述问题,提出了一种新的图卷积双关注网络(Graph Convolutional dual - attention Networks, GCDAN)框架,该网络由时空嵌入和轨迹编码器-解码器两个模块组成。第1个模块利用双向扩散图卷积保持位置嵌入中的空间依赖性;第二模块采用基于序列对序列架构的双注意机制,有效提取轨迹内的长程序列依赖关系和不同轨迹之间的相关性,用于预测。在3个真实数据集上的大量实验表明,GCDAN相比于最新的基准算法获得了显著的性能提升。

存在挑战:

(1)数据的稀疏性和不精确性。轨迹数据稀疏,在本质上可能是不可靠的。具体而言,位置信息仅在用户访问位置服务时被记录,因此在实际应用中记录的数据是低采样的。此外,粗粒度定位方法可能无法区分物理空间中距离较近的位置,这意味着记录的数据不可靠。(2)高阶轨迹。轨迹中的序列依赖通常是高阶的。这是因为要预测的位置可能与远处的位置表现出密切的依赖关系,而不是与相邻的位置。此外,未来的位置取决于用户的偏好和习惯。然而,现有的深度移动预测模型忽略了移动预测的高阶性质。

方法:

提出了一种新颖的图卷积双注意力网络框架(GraphConvolutional dual - attentivennetworks,简称GCDAN)。GCDAN包括时空嵌入和轨迹编码器-解码器两个模块。第1模块基于历史轨迹构建位置依赖图,设计双向扩散图卷积捕捉轨迹中位置的空间依赖关系,缓解邻居位置信息聚集对轨迹数据稀疏性和不准确性的影响;在第二个模块中,我们采用序列对序列架构的方法,通过提取有价值的历史轨迹序列模式来预测人类的移动性。与传统的基于循环神经网络的注意力处理方法不同,设计了包含轨迹内注意力和轨迹间注意力的双注意力机制来处理轨迹数据的高阶性质。轨迹内注意力能够刻画轨迹内的长程序列依赖关系,轨迹间注意力通过刻画不同轨迹间的相关性进一步刻画用户偏好。在多个真实数据集上的实验结果表明,GCDAN算法相对于现有主流算法取得了显著的性能提升。

 据我们所知,我们是首批引入图卷积和双注意机制来处理人类移动预测问题中轨迹数据的稀疏性和不准确性以及高阶序列性质的人之一。

 

 

为了解决用户移动性预测问题,提出了一种新颖的框架,即图卷积双关注网络(Graph Convolutional dual - attention Networks,简称GCDAN),其概述如图1所示。GCDAN包括两个模块:(1)时空嵌入和(2)轨迹编码器-解码器。第1个模块旨在将轨迹中的时空点嵌入到稠密表示中,同时捕获它们的空间依赖和时间特征;第二个模块采用序列对序列架构,考虑轨迹内的序列依赖关系和不同轨迹之间的相关性。接下来,我们将详细介绍gcdan的设计。 

1)Spatio-temporal Embedding Module

为了实现这一目标,一个自然的想法是分别学习位置和时间戳的表示,然后将它们连接起来以生成最终的表示。

2)Trajectory Encoder-decoder Module 

Objective Function

 

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值