PyTorch在GPU上跑代码需要迁移哪些东西?

一、数据、模型、损失函数需要迁移到GPU上

使用GPU训练时,数据、函数和模型都必须同时放在GPU上,否则会出错。

#(1)判断GPU是否可用
if torch.cuda.is_available():
    device = torch.device('cuda')
    cudnn.benchmark = True
else:
    device = torch.device('cpu')
 
#(2)构建模型时,把网络,与损失函数迁移到GPU上
model = CNN().to(device)
loss = nn.CrossEntropyLoss().to(device)
 
#(3)训练模型时,把数据迁移到GPU上
x, y = x.to(device), y.to(device)
 
# 注,只有tensor类型才能上传到GPU上,故需要对numpy数据进行tensor类型转换
# torch.tensor(x) 或 torch.from_numpy(x) 

 
#(4)对训练的输出结果有些需要使用np的函数进行操作
# 故需先将输出结果迁移CPU上,再转成numpy类型,然后使用np的函数
output = (model(x)).cpu().numpy()

二、知识拓展

2.1 指定单个GPU

import os
# 按照PCI_BUS_ID顺序从0开始排列GPU设备 
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
model.cuda()

2.2 指定多个GPU

import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0, 1, 2, 3"

device_ids = [0,1,2,3]
# 默认使用所有的device_ids
model  = torch.nn.Dataparallel(model, device_ids =device_ids)
model.cuda()

2.3 .to(device)方法

# 单GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# 多GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = nn.DataParallel(model,device_ids=[0,1,2])
model.to(device)

2.4 将模型放入GPU的两种方式

# 方式1
model1 = Model(para1=1,para2=2)
model1.cuda()

# 方式2(推荐,更简洁)
model2 = Model(para1=1,para2=2).cuda()

注意:在将模型实例放到GPU上时,即用model.cuda()时,只会将__init__中的有self前缀的属性及函数放到GPU上,对于其他的函数无作用。所以非_init__中定义的函数和数据需要单独的放入GPU语句,也就是上述代码中的para1和para2参数。

  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PyTorch中,在迁移网络中添加Batch Normalization(BN)层的代码实现如下: 首先,我们假设已经加载了一个预训练的模型,现在需要在模型的某些层中添加BN层。下面是一个示例,假设我们要在模型的第一个卷积层后添加BN层: ```python import torch import torch.nn as nn import torchvision # 加载预训练的模型 model = torchvision.models.resnet18(pretrained=True) # 冻结模型的参数,只迁移权重 for param in model.parameters(): param.requires_grad = False # 在模型的第一个卷积层后添加BN层 model.conv1 = nn.Sequential( model.conv1, nn.BatchNorm2d(64) ) # 替换最后一层分类器(全连接层) num_features = model.fc.in_features model.fc = nn.Linear(num_features, num_classes) # 将模型发送到设备(如GPU) model = model.to(device) # 优化器和损失函数的定义 optimizer = torch.optim.SGD(model.parameters(), lr=0.001) criterion = nn.CrossEntropyLoss() # 训练和验证循环 for epoch in range(num_epochs): # 训练 model.train() for images, labels in train_loader: images = images.to(device) labels = labels.to(device) # 前向传播 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 验证 model.eval() with torch.no_grad(): correct = 0 total = 0 for images, labels in val_loader: images = images.to(device) labels = labels.to(device) # 前向传播 outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy = 100 * correct / total print(f"Epoch {epoch+1}/{num_epochs} - Validation accuracy: {accuracy:.2f}%") ``` 在这个示例中,我们首先加载了一个预训练的ResNet-18模型。然后,我们冻结了所有参数,只迁移了权重。接下来,我们使用`nn.Sequential`将BN层添加到模型的第一个卷积层之后。然后,我们将最后的分类器层替换为具有正确输出数量的线性层。最后,我们定义优化器和损失函数。 在训练和验证循环中,我们首先将模型设置为训练模式,然后对于每个训练图像批次,进行前向传播、计算损失、反向传播和优化。然后,我们将模型设置为评估模式,并对验证集进行前向传播来计算准确度。最后,我们打印出每个epoch的验证准确度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值