python并发编程

程序并行化形式

程序并行化有三种方式, 分别是:并发编程(Concurrent Programming)、 并行编程(Parallel Programming)、
分布式编程(Distributed Programming)

  • 并发编程:类似操作系统中的伪并行, 任一时刻只有一个进程占用CPU, 通过调度控制不同的进程在不同时刻访问CPU
  • 并行编程:是指在多核环境中,同一时间每个核都可以允许一个进程运行。
  • 分布式编程:指在不同机器上同一时刻完成同一项任务, 是物理上的隔离。

并行化的通信方式

  • 共享状态:共享进程间的资源,类似于同一进程里所有的线程共享进程的资源一样,在这种通信方式下,对于只读的数据可以不加保护措施,但是对于可写的数据,必须要防止多个进程同时修改这个数据。
  • 消息传递:消息传递能够避免上述问题,也能够应用在分布式编程中, 每进行一次消息传递,都会复制一份数据,因此数据一致性得到提升

消息传递优点:

  • 数据的一致性大大增强
  • 消息能够在本地或者分布式环境中传输
  • 解决可伸缩问题并允许不同系统间的相互操作
  • 易于实现

并行化存在的问题

死锁

与操作系统中的死锁问题一样,发生在多个进程中每个都需要其他进程的资源,同时又不肯释放自己的资源,导致资源的需求关系形成闭合的环状

饿死

饿死概念与操作系统中的也是一样,指的是某个进程一直得不到自己的资源,无法继续运行。

竞争条件

多个具有不确定性(无法知道何时会到达或执行指定操作)的对象(进程或电子信号),必须要按照时间序列(time sequence)执行,假如这种同步被破坏,那么多个进程会没有顺序地修改同一个变量,导致数据出错

1. 线程(Thread)

python提供thread和threading模。thread是基础的、低等级的、类似于Function作为线程
的运行体。threading是易于使用的基于对象的接口,可以继承Thread对象来实现线程,还提供了
一些线程相关的对象

使用thread的例子
import thread
def worker():
    """thread worker function"""
    print 'Worker'
thread.start_new_thread(worker)

使用threading的例子
import threading
def worker():
    """thread worker function"""
    print 'Worker'
t = threading.Thread(target=worker)
t.start()

1.1 线程状态

线程有5种状态

       新建---(启动)-->就绪<--(调度)-->运行--(结束)-->死亡
                                (满足阻塞条件)|
                                            阻塞

1.2 线程同步(锁)

线程的优势在于能够同时运行多个任务。 但是当线程需要共享数据时,可能存在数据不同步的问题,为了避免这种情况,需要使用锁。

   |
   |
 线|--(访问共享数据,请求锁定)-->锁定池(同一时刻可能有多个线程位于锁定池中,处于同步锁定状态直到获得锁定)
 程|                    (获得锁定)|
   |<--(访问完成,释放锁定)----已锁定(同一时刻最多有一个线程处于锁定状态,处于运行状态)
   |

<img src=-“http://images.cnblogs.com/cnblogs_com/huxi/WindowsLiveWriter/Python_11F5/thread_lock_3.png”>

1.3 线程通信(条件变量)

条件变量允许线程比如"set"和"print"在条件不满足的时候(列表为None时)等待,等到条件满足的时候(列表已经创建)发出一个通知,告诉"set" 和"print"条件已经有了,你们该起床干活了;然后"set"和"print"才继续运行

1.4 线程运行和阻塞状态

阻塞有三种状态:

  • 同步阻塞:指处于竞争锁定的状态,线程请求锁定时将进入这个状态, 成功获得锁定后恢复到运行状态
  • 等待阻塞:指等待其他线程通知的状态,线程获得条件锁定后, 调用“等待”将进入这个状态,线程发出通知,线程将进入同步阻塞状态,再次竞争条件锁定
  • 其他阻塞:指调用time.sleep()、anotherthread.join()或等待IO时的阻塞,此状态下的线程不会释放已获得的锁定

thread

thread 模块提供的其他方法:

  • thread.interrupt_main(): 在其他线程中终止主线程。
  • thread.get_ident(): 获得一个代表当前线程的魔法数字,常用于从一个字典中获得线程相关的数据。这个数字本身没有任何含义,并且当线程结束后会被新线程复用。
  • thread还提供了一个ThreadLocal类用于管理线程相关的数据,名为 thread._local,threading中引用了这个类。
    由于thread提供的线程功能不多,无法在主线程结束后继续运行,不提供条件变量等等原因,一般不使用thread模块,这里就不多介绍了。
# encoding: UTF-8
import thread
import time

# 一个用于在线程中执行的函数
def func():
    for i in range(5):
        print 'func'
        time.sleep(1)

    # 结束当前线程
    # 这个方法与thread.exit_thread()等价
    thread.exit() # 当func返回时,线程同样会结束

# 启动一个线程,线程立即开始运行
# 这个方法与thread.start_new_thread()等价
# 第一个参数是方法,第二个参数是方法的参数
thread.start_new(func, ()) # 方法没有参数时需要传入空tuple

# 创建一个锁(LockType,不能直接实例化)
# 这个方法与thread.allocate_lock()等价
lock = thread.allocate()

# 判断锁是锁定状态还是释放状态
print lock.locked()

# 锁通常用于控制对共享资源的访问
count = 0

# 获得锁,成功获得锁定后返回True
# 可选的timeout参数不填时将一直阻塞直到获得锁定
# 否则超时后将返回False
if lock.acquire():
    count += 1

    # 释放锁
    lock.release()

# thread模块提供的线程都将在主线程结束后同时结束
time.sleep(6)
threading

threading基于Java的线程模型设计。锁(Lock)和条件变量(Condition)在Java中是对象的基本行为(每一个对象都自带了锁和条件变量),而在Python中则是独立的对象。Python Thread提供了Java Thread的行为的子集;没有优先级、线程组,线程也不能被停止、暂停、恢复、中断。Java Thread中的部分被Python实现了的静态方法在threading中以模块方法的形式提供。

  • threading.currentThread(): 返回当前的线程变量
  • threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
  • threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。

threading模块提供的类:Thread, Lock, Rlock, Condition, [Bounded]Semaphore, Event, Timer, local.

Thread

Thread是线程类,与Java类似,有两种使用方法,直接传入要运行的方法或从Thread继承并覆盖run():

# encoding: UTF-8
import threading

# 方法1:将要执行的方法作为参数传给Thread的构造方法
def func():
    print 'func() passed to Thread'

t = threading.Thread(target=func)
t.start()

# 方法2:从Thread继承,并重写run()
class MyThread(threading.Thread):
    def run(self):
        print 'MyThread extended from Thread'

t = MyThread()
t.start()

构造方法:

  • Thread(group=None, target=None, name=None, args=(), kwargs={})
  • group: 线程组,目前还没有实现,库引用中提示必须是None;
  • target: 要执行的方法;
  • name: 线程名;
  • args/kwargs: 要传入方法的参数。

实例方法:

  • isAlive(): 返回线程是否在运行。正在运行指启动后、终止前。
  • get/setName(name): 获取/设置线程名。
  • is/setDaemon(bool): 获取/设置是否守护线程。初始值从创建该线程的线程继承。当没有非守护线程仍在运行时,程序将终止。
  • start(): 启动线程。
  • join([timeout]): 阻塞当前上下文环境的线程,直到调用此方法的线程终止或到达指定的timeout(可选参数)。
    (join方法,如果一个线程或者一个函数在执行过程中要调用另外一个线程,并且待到其完成以后才能接着执行,那么在调用这个线程时可以使用被调用线程的join方法。)
# encoding: UTF-8
import threading
import time

def context(tJoin):
    print 'in threadContext.'
    tJoin.start()

    # 将阻塞tContext直到threadJoin终止。
    tJoin.join()

    # tJoin终止后继续执行。
    print 'out threadContext.'

def join():
    print 'in threadJoin.'
    time.sleep(1)
    print 'out threadJoin.'

tJoin = threading.Thread(target=join)
tContext = threading.Thread(target=context, args=(tJoin,))

tContext.start()
Lock

Lock(指令锁)是可用的最低级的同步指令。Lock处于锁定状态时,不被特定的线程拥有。Lock包含两种状态——锁定和非锁定,以及两个基本的方法
可以认为Lock有一个锁定池,当线程请求锁定时,将线程至于池中,直到获得锁定后出池。池中的线程处于状态图中的同步阻塞状态。

构造方法:

  • Lock()

实例方法:

  • acquire([timeout]): 使线程进入同步阻塞状态,尝试获得锁定。
  • release(): 释放锁。使用前线程必须已获得锁定,否则将抛出异常。
import threading                            # 导入threading模块
import time                             # 导入time模块
class mythread(threading.Thread):                   # 通过继承创建类
    def __init__(self,threadname):                  # 初始化方法
        threading.Thread.__init__(self,name = threadname)
    def run(self):                          # 重载run方法
        global x                        # 使用global表明x为全局变量
        lock.acquire()                      # 调用lock的acquire方法
        for i in range(3):
            x = x + 1
        time.sleep(2)           # 调用sleep函数,让线程休眠5秒
        print x
        lock.release()                # 调用lock的release方法
lock = threading.Lock()               # 类实例化
tl = []                          # 定义列表
for i in range(10):
    t = mythread(str(i))            # 类实例化
    tl.append(t)              # 将类对象添加到列表中

x=0                        # 将x赋值为0
for i in tl:
    i.start()                     # 依次运行线程

RLock

RLock(可重入锁)是一个可以被同一个线程请求多次的同步指令。RLock使用了“拥有的线程”和“递归等级”的概念,处于锁定状态时,RLock被某个线程拥有。拥有RLock的线程可以再次调用acquire(),释放锁时需要调用release()相同次数。
RLock包含一个锁定池和一个初始值为0的计数器,每次成功调用 acquire()/release(),计数器将+1/-1,为0时锁处于未锁定状态。

构造方法:

  • RLock()

实例方法:

  • acquire([timeout])/release(): 跟Lock差不多。
# encoding: UTF-8
import threading
import time

rlock = threading.RLock()

def func():
    # 第一次请求锁定
    print '%s acquire lock...' % threading.currentThread().getName()
    if rlock.acquire():
        print '%s get the lock.' % threading.currentThread().getName()
        time.sleep(2)

        # 第二次请求锁定
        print '%s acquire lock again...' % threading.currentThread().getName()
        if rlock.acquire():
            print '%s get the lock.' % threading.currentThread().getName()
            time.sleep(2)

        # 第一次释放锁
        print '%s release lock...' % threading.currentThread().getName()
        rlock.release()
        time.sleep(2)

        # 第二次释放锁
        print '%s release lock...' % threading.currentThread().getName()
        rlock.release()

t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t3 = threading.Thread(target=func)
t1.start()
t2.start()
t3.start()
Condition

Condition(条件变量)通常与一个锁关联。需要在多个Contidion中共享一个锁时,可以传递一个Lock/RLock实例给构造方法,否则它将自己生成一个RLock实例。
可以认为,除了Lock带有的锁定池外,Condition还包含一个等待池,池中的线程处于状态图中的等待阻塞状态,直到另一个线程调用notify()/notifyAll()通知;得到通知后线程进入锁定池等待锁定。

构造方法:

  • Condition([lock/rlock])

实例方法:

  • acquire([timeout])/release(): 调用关联的锁的相应方法。
  • wait([timeout]): 调用这个方法将使线程进入Condition的等待池等待通知,并释放锁。使用前线程必须已获得锁定,否则将抛出异常。
  • notify(): 调用这个方法将从等待池挑选一个线程并通知,收到通知的线程将自动调用acquire()尝试获得锁定(进入锁定池);其他线程仍然在等待池中。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。
  • notifyAll(): 调用这个方法将通知等待池中所有的线程,这些线程都将进入锁定池尝试获得锁定。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。
# encoding: UTF-8
import threading
import time

# 商品
product = None
# 条件变量
con = threading.Condition()

# 生产者方法
def produce():
    global product

    if con.acquire():
        while True:
            if product is None:
                print 'produce...'
                product = 'anything'

                # 通知消费者,商品已经生产
                con.notify()

            # 等待通知
            con.wait()
            time.sleep(2)

# 消费者方法
def consume():
    global product

    if con.acquire():
        while True:
            if product is not None:
                print 'consume...'
                product = None

                # 通知生产者,商品已经没了
                con.notify()

            # 等待通知
            con.wait()
            time.sleep(2)

t1 = threading.Thread(target=produce)
t2 = threading.Thread(target=consume)
t2.start()
t1.start()
Semaphore/BoundedSemaphore

Semaphore管理一个内置的计数器,每当调用acquire()时-1,调用release() 时+1。计数器不能小于0;当计数器为0时,acquire()将阻塞线程至同步锁定状态,直到其他线程调用release()。

基于这个特点,Semaphore经常用来同步一些有“访客上限”的对象,比如连接池。

BoundedSemaphore 与Semaphore的唯一区别在于前者将在调用release()时检查计数器的值是否超过了计数器的初始值,如果超过了将抛出一个异常。

构造方法:

  • Semaphore(value=1): value是计数器的初始值。

实例方法:

  • acquire([timeout]): 请求Semaphore。如果计数器为0,将阻塞线程至同步阻塞状态;否则将计数器-1并立即返回。
  • release(): 释放Semaphore,将计数器+1,如果使用BoundedSemaphore,还将进行释放次数检查。release()方法不检查线程是否已获得 Semaphore。
# encoding: UTF-8
import threading
import time

# 计数器初值为2
semaphore = threading.Semaphore(2)

def func():

    # 请求Semaphore,成功后计数器-1;计数器为0时阻塞
    print '%s acquire semaphore...' % threading.currentThread().getName()
    if semaphore.acquire():

        print '%s get semaphore' % threading.currentThread().getName()
        time.sleep(4)

        # 释放Semaphore,计数器+1
        print '%s release semaphore' % threading.currentThread().getName()
        semaphore.release()

t1 = threading.Thread(target=func)





t2 = threading.Thread(target=func)
t3 = threading.Thread(target=func)
t4 = threading.Thread(target=func)
t1.start()
t2.start()
t3.start()
t4.start()

time.sleep(2)

# 没有获得semaphore的主线程也可以调用release
# 若使用BoundedSemaphore,t4释放semaphore时将抛出异常
print 'MainThread release semaphore without acquire'
semaphore.release()
Event

Event(事件)是最简单的线程通信机制之一:一个线程通知事件,其他线程等待事件。Event内置了一个初始为False的标志,当调用set()时设为True,调用clear()时重置为 False。wait()将阻塞线程至等待阻塞状态。

Event其实就是一个简化版的 Condition。Event没有锁,无法使线程进入同步阻塞状态。

构造方法:

  • Event()

实例方法:

  • isSet(): 当内置标志为True时返回True。
  • set(): 将标志设为True,并通知所有处于等待阻塞状态的线程恢复运行状态。
  • clear(): 将标志设为False。
  • wait([timeout]): 如果标志为True将立即返回,否则阻塞线程至等待阻塞状态,等待其他线程调用set()。
# encoding: UTF-8
import threading
import time

event = threading.Event()

def func():
    # 等待事件,进入等待阻塞状态
    print '%s wait for event...' % threading.currentThread().getName()
    event.wait()

    # 收到事件后进入运行状态
    print '%s recv event.' % threading.currentThread().getName()

t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t1.start()
t2.start()

time.sleep(2)

# 发送事件通知
print 'MainThread set event.'
event.set()
Timer

Timer(定时器)是Thread的派生类,用于在指定时间后调用一个方法。

构造方法:

  • Timer(interval, function, args=[], kwargs={})
  • interval: 指定的时间
  • function: 要执行的方法
  • args/kwargs: 方法的参数

实例方法:

  • Timer从Thread派生,没有增加实例方法。
# encoding: UTF-8
import threading

def func():
    print 'hello timer!'

timer = threading.Timer(5, func)
timer.start()
local

local是一个小写字母开头的类,用于管理 thread-local(线程局部的)数据。对于同一个local,线程无法访问其他线程设置的属性;线程设置的属性不会被其他线程设置的同名属性替换。

可以把local看成是一个“线程-属性字典”的字典,local封装了从自身使用线程作为 key检索对应的属性字典、再使用属性名作为key检索属性值的细节。

# encoding: UTF-8
import threading

local = threading.local()
local.tname = 'main'

def func():
    local.tname = 'notmain'
    print local.tname

t1 = threading.Thread(target=func)
t1.start()
t1.join()

print local.tname

熟练掌握Thread、Lock、Condition就可以应对绝大多数需要使用线程的场合,某些情况下local也是非常有用的东西。本文的最后使用这几个类展示线程基础中提到的场景:

# encoding: UTF-8
import threading

alist = None
condition = threading.Condition()

def doSet():
    if condition.acquire():
        while alist is None:
            condition.wait()
        for i in range(len(alist))[::-1]:
            alist[i] = 1
        condition.release()

def doPrint():
    if condition.acquire():
        while alist is None:
            condition.wait()
        for i in alist:
            print i,
        print
        condition.release()

def doCreate():
    global alist
    if condition.acquire():
        if alist is None:
            alist = [0 for i in range(10)]
            condition.notifyAll()
        condition.release()

tset = threading.Thread(target=doSet,name='tset')
tprint = threading.Thread(target=doPrint,name='tprint')
tcreate = threading.Thread(target=doCreate,name='tcreate')
tset.start()
tprint.start()
tcreate.start()

2. 进程(Process)

Python由于存在GIL的问题,比较好的并行方式是多进程,使用多进程要考虑机器配置和资源开销

Unix/Linux操作系统提供了一个fork()系统调用,它非常特殊。普通的函数调用,调用一次,返回一次,但是fork()调用一次,返回两次,因为操作系统自动把当前进程(称为父进程)复制了一份(称为子进程),然后,分别在父进程和子进程内返回。

子进程永远返回0,而父进程返回子进程的ID。这样做的理由是,一个父进程可以fork出很多子进程,所以,父进程要记下每个子进程的ID,而子进程只需要调用getppid()就可以拿到父进程的ID。

multiprocessing

该模块为在子进程中运行任务、通信和共享数据,以及执行各种形式的同步提供支持。接口风格与threading模块类似,但要注意进程之间没有任何共享状态。

多进程处理的一般建议

  • 确保进程之间传递的所有数据都能够序列化
  • 避免使用共享数据,尽可能使用消息传递和队列。使用消息传递时,不必过于担心同步、锁定和其他问题。当进程的数量增长时,它往往还能提供更好的扩展
  • 在必须行在单独进程中的函数内部,不要使用全局变量而应当显式地传递参数
  • 尽量不要在同一个程序中混合使用线程和多线程处理
  • 特別要注意关闭进程的方式。一般而言,需要显式地关闭进程,并使用一种定义良好的终止模式,而不要仅仅依赖于垃圾收集或者被迫使用terminate ()操作强制终止子进程
  • 管理器和代理的使用与分布式计算中的多个概念密切相关(例如,分布式对象)
  • 尽管此模块可以工作在Windows上,但还是应该仔细阅读官方文档中的各种微妙细节
  • 最重要的一点是:尽量让事情变得简单
from multiprocessing import Process
import os

# 子进程要执行的代码
def run_proc(name):
    print 'Run child process %s (%s)...' % (name, os.getpid())

if __name__=='__main__':
    print 'Parent process %s.' % os.getpid()
    p = Process(target=run_proc, args=('test',))
    print 'Process will start.'
    p.start()
    p.join()
    print 'Process end.'

####### 进程间通信
multiprocessing模块支持进程间通信的两种主要形式:管道和队列,这两种方法都是使用消息传递实现的。

Paperback: 107 pages Publisher: Packt Publishing - ebooks Account (June 25, 2014) Language: English Develop efficient parallel systems using the robust Python environment Overview Demonstrates the concepts of Python parallel programming Boosts your Python computing capabilities Contains easy-to-understand explanations and plenty of examples In Detail Starting with the basics of parallel programming, you will proceed to learn about how to build parallel algorithms and their implementation. You will then gain the expertise to evaluate problem domains, identify if a particular problem can be parallelized, and how to use the Threading and Multiprocessor modules in Python. The Python Parallel (PP) module, which is another mechanism for parallel programming, is covered in depth to help you optimize the usage of PP. You will also delve into using Celery to perform distributed tasks efficiently and easily. Furthermore, you will learn about asynchronous I/O using the asyncio module. Finally, by the end of this book you will acquire an in-depth understanding about what the Python language has to offer in terms of built-in and external modules for an effective implementation of Parallel Programming. This is a definitive guide that will teach you everything you need to know to develop and maintain high-performance parallel computing systems using the feature-rich Python. What you will learn from this book Explore techniques to parallelize problems Integrate the Parallel Python module to implement Python code Execute parallel solutions on simple problems Achieve communication between processes using Pipe and Queue Use Celery Distributed Task Queue Implement asynchronous I/O using the Python asyncio module Create thread-safe structures Approach A fast, easy-to-follow and clear tutorial to help you develop Parallel computing systems using Python. Along with explaining the fundamentals, the book will also introduce you to slightly advanced concepts and will help you in implementing these techniques in the real world. Who this book is written for If you are an experienced Python programmer and are willing to utilize the available computing resources by parallelizing applications in a simple way, then this book is for you. You are required to have a basic knowledge of Python development to get the most of this book.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值