半代入法——过一点的椭圆切线

【数学】椭圆曲线中的半代入法

  • 例题 张宇《高数18讲2021版》习题 17.3
    圆锥面S 是由过点(4,0)且与椭圆 x 2 4 + y 2 3 = 1 \frac{x^{2}}{4}+\frac{y^{2}}{3}=1 4x2+3y2=1相切的直线绕x轴旋转而成,求圆锥面S

想求圆锥面S,必须先计算切线。一般计算方法是列方程组,消去无关变量后解得答案。显得有点麻烦。半代入法可以用来解决过一点的椭圆切线问题

一、用法

对于例题,设切点坐标为 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0),则直接可设切线方程为
x 0 ⋅ x 4 + y 0 ⋅ y 3 = 1 \frac{x_{0}\cdot x}{4}+\frac{y_{0}\cdot y}{3}=1 4x0x+3y0y=1

  • 这里得方程与原式比较,是将 x 2 x^{2} x2 中其中一个 x x x 代换为了 x 0 x_{0} x0 y y y 处理方式相同

这样,可得关于 x 0 x_{0} x0 y 0 y_{0} y0 的方程组 { x 0 ⋅ 4 4 + y 0 ⋅ 0 3 = 1 x 0 2 4 + y 0 2 3 = 1 \left\{\begin{matrix} \frac{x_{0}\cdot 4}{4}+\frac{y_{0}\cdot 0}{3}=1 & \\ & \\ \frac{x_{0}^{2}}{4}+\frac{y_{0}^{2}}{3}=1 \end{matrix}\right. 4x04+3y00=14x02+3y02=1,并解得 x 0 x_{0} x0 y 0 y_{0} y0

二、证明

对于一般椭圆 x 2 a 2 + y 2 b 2 = 1 \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 a2x2+b2y2=1,设其任意切点为 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0),则由点斜式可设得切线方程:

y − y 0 = k ⋅ ( x − x 0 ) y-y_{0}=k\cdot (x-x_{0}) yy0=k(xx0),即: k = y − y 0 x − x 0 k=\frac{y-y_{0}}{x-x_{0}} k=xx0yy0

其中, k k k 又是椭圆曲线在 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0)点处的导数,因此又可得 k k k x 0 , y 0 x_{0},y_{0} x0,y0的关系:

2 ⋅ x 0 a 2 + 2 ⋅ y 0 b 2 ⋅ k = 0 \frac{2\cdot x_{0}}{a^{2}}+\frac{2\cdot y_{0}}{b^{2}}\cdot k=0 a22x0+b22y0k=0

最后将得到的k代入上式,最终化简并得到

x 0 ⋅ x a 2 + y 0 ⋅ y b 2 = x 0 2 a 2 + y 0 2 b 2 = 1 \frac{x_{0}\cdot x}{a^2}+\frac{y_{0}\cdot y}{b^2}=\frac{x_{0}^2}{a^2}+\frac{y_{0}^2}{b^2}=1 a2x0x+b2y0y=a2x02+b2y02=1

由此可得结论:

过椭圆 x 2 a 2 + y 2 b 2 = 1 \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 a2x2+b2y2=1上一点 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0)处的切线方程为:

x 0 ⋅ x a 2 + y 0 ⋅ y b 2 = 1 \frac{x_{0}\cdot x}{a^2}+\frac{y_{0}\cdot y}{b^2}=1 a2x0x+b2y0y=1

后记

这应该是高中圆锥曲线的知识,不过考研党想不起来了,网上关于这个的资料又很少,只能自己来证明一遍。好像半代法不仅可以用在 x 2 x^2 x2上,对于一次形式 x x x,我听其中一个老师说可以用 x + x 0 2 \frac{x+x_0}{2} 2x+x0来替换,但是代入的条件什么的我就不清楚了,因为网上资料很少,加上考研不会要求这么细致,我就没再继续看。个人手打,错的地方还望指正

  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
要计算线某一点切线,可以使用以下步骤: 1. 找到该点在线上的位置,即该点到线起点的距离。 2. 计算该点临近的两个点,即该点在线上的前一个点和后一个点。 3. 计算这两个点之间的方向向量,即线的方向。可以使用两个点的坐标差来计算。 4. 将方向向量归一化,即将其长度变为1。 5. 计算该点到线的距离,即在方向向量上的投影。 6. 计算切线向量。切线向量是方向向量旋转90度后的向量,可以使用以下公式计算:(x, y) -> (-y, x) 7. 将切线向量归一化。 下面是一个示例代码: ```python from shapely.geometry import LineString, Point from math import sqrt # 定义线 line = LineString([(0, 0), (1, 1), (2, 0), (3, 1), (4, 0)]) # 定义要计算切线的点 point = Point(2, 0) # 找到该点在线上的位置 distance = line.project(point) # 计算该点临近的两个点 previous_point, next_point = line.interpolate(distance - 0.1), line.interpolate(distance + 0.1) # 计算线的方向向量 direction_vector = (next_point.x - previous_point.x, next_point.y - previous_point.y) # 归一化方向向量 length = sqrt(direction_vector[0] ** 2 + direction_vector[1] ** 2) normalized_direction_vector = (direction_vector[0] / length, direction_vector[1] / length) # 计算该点到线的距离 projection = (point.x - previous_point.x) * normalized_direction_vector[0] + (point.y - previous_point.y) * normalized_direction_vector[1] # 计算切线向量 tangent_vector = (-normalized_direction_vector[1], normalized_direction_vector[0]) # 归一化切线向量 length = sqrt(tangent_vector[0] ** 2 + tangent_vector[1] ** 2) normalized_tangent_vector = (tangent_vector[0] / length, tangent_vector[1] / length) # 打印切线向量 print(normalized_tangent_vector)

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值