高数 函数极限求法(一) 代入法
极限是什么?
极限就像你坐着宇宙飞船去探索宇宙的边界一样,无限接近 却 没法到达!
大学高数中极限部分可以简单分为两部分:函数极限 和 数列极限 ;
本篇讲解利用代入法求解函数极限,
一、什么是函数极限,什么是数列极限?
求解极限之前,我们必须要知道求解的极限题目是什么样的极限,那么如下图所示:
可以看出,如果极限符号下面是 x->2 ( 解释:x趋近于2的意思 ),那么代表的是函数极限;
如果极限符号下面是 n->2 ( 解释:n 趋向于2的意思) ,那么代表的是数列极限;
是不是相当简单,很容易区分!
二、代入法求解函数极限讲解 + 例题
第一题:如下图所示,直接把 x->2(解释:x趋近于2的意思) 的这个数2代入到极限后面的方程中即可;
在代入得过程中,极限符号就不必再写了,第一种写法是正确的,第二种是错误的;
第二题:在求极限的时候也有可能遇到下面的情况,那么无论是 2 + 还是2 - ,都当作2处理;
tips: 这里出现了 2 的右上角有个 (+) 或者( - ),是什么意思呢,好,我们看下面的
图片就会明白了; 2 + 的意思是从 2 的右边逐渐的靠近2,比如:2.5 2.4 2.3 2.2 2.1 ....
逐渐逼近2; 那么 2 - 的意思 就是从 2的左边逐渐逼近2,比如:1.8 1.9 1.99 1.999 ....
第三题:只有一部分的函数极限才可以使用代入法,下面这些题目是没有办法是用代入法的,大家需要了解;
上图中,第一题 分母不能为零,所有x=0 没有办法代入,无法使用代入法;
第二题 分母不能为无穷,也不能使用代入法;
第三题 对数的定义域要大于零,所以 0 无法代入,也不能使用代入法;
我们无法使用代入法求解上面的函数极限,但是还是有其它的方法求解的,后续会说到;
总结:1. 极限分为: 函数极限和数列极限;
2. 函数极限的 代入法 如何使用;
3. 哪些函数极限类型不能使用代入法
持续更新中 . . . .