线性代数——特征值与特征向量


本篇笔记源于《程序员的数学之线性代数》

定义与性质

一般而言,对于方阵A,满足
A p = λ p p ≠ o \begin{array}{c} A \boldsymbol{p}=\lambda \boldsymbol{p} \\ \boldsymbol{p} \neq \boldsymbol{o} \end{array} Ap=λpp=o
的数 λ \lambda λ和向量p分别称为特征值特征向量

几何学意义

从几何学意义上讲,特征向量乘上A之后,除了长度会有伸缩变化,方向将不会发生改变。这里的长度变化倍率便是特征值。用动态图描述在2x2矩阵A的作用下,其两个特征向量的变化如图所示:
在这里插入图片描述

性质

λ \lambda λ p \boldsymbol{p} p为方阵A的特征值和特征向量,则

  • “A有0特征值”等价于“A是奇异矩阵”(0特征值就说明存在Ap=o,p不等于o,所以A的ker不为零,p至少有一维的信息映射到相同的结果,这一维在新空间中就无用了)
  • “A没有0特征值”等价于“A可逆”(从行列式角度看A对角化后的行列式等于A的行列式,A行列式不为0于是A可逆)
  • 对于 α ≠ 0 \alpha \neq 0 α=0 α p \alpha p αp也是A的特征向量,对应的特征值都是 λ \lambda λ
  • 对于特征值 λ \lambda λ,若另有向量q也是其特征向量,那么p+q也是A的特征向量,对应特征值为 λ \lambda λ
  • p是 α A \alpha A αA的特征向量,对应特征值为 α λ \alpha \lambda αλ
  • p是 A + α I A+\alpha I A+αI的特征向量,对应特征值为 α + λ \alpha+\lambda α+λ
  • p是 A k A^k Ak的特征向量,对应特征值为 λ k \lambda^k λk
  • p是 A − 1 A^{-1} A1的特征向量(前提是A逆存在),对应的特征值为 1 λ \frac{1}{\lambda} λ1
  • S − 1 p S^{-1}p S1p S − 1 A S S^{-1}AS S1AS的特征向量,对应的特征值为 λ \lambda λ
  • 对角矩阵 diag ⁡ ( a 1 , ⋯   , a n ) \operatorname{diag}\left(a_{1}, \cdots, a_{n}\right) diag(a1,,an)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值