PyTorch手写数字识别(MNIST数据集)

PyTorch手写数字识别(MNIST数据集)

MNIST 手写数字识别是一个比较简单的入门项目,相当于深度学习中的 Hello World,可以让我们快速了解构建神经网络的大致过程.本代码采用 PyTorch 1.6.0 编写并运行。
导入相关库

import torch
import torchvision as tv
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as optim

torchvision 用于下载并导入数据集
获取训练集和测试集

# 定义数据预处理方式
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307, ), (0.3081, ))
    ]
    )

定义训练数据集

trainset = tv.datasets.MNIST(
    root='./data/',
    train=True,
    download=True,
    transform=transform
    )

定义测试数据集

testset = tv.datasets.MNIST(
    root='./data/',
    train=False,
    download=True,
    transform=transform
    )
  • root 用于指定数据集在下载之后的存放路径

  • train是指定在数据集下载完成后需要载入的那部分数据,设置为 True 则说明载入的是该数据集的训练集部分,设置为 False 则说明载入的是该数据集的测试集部分

  • download 为 True 表示数据集需要程序自动帮你下载

  • transform 用于指定导入数据集需要对数据进行哪种变化操作

这样设置并运行后,就会在指定路径中下载 MNIST 数据集,之后就可以使用了。

数据装载和预览

BATCH_SIZE = 64
# 定义训练批处理数据
trainloader = torch.utils.data.DataLoader(
    trainset,
    batch_size=BATCH_SIZE,
    shuffle=True,
    )

# 定义测试批处理数据
testloader = torch.utils.data.DataLoader(
    testset,
    batch_size=BATCH_SIZE,
    shuffle=False,
    )

搭建神经网络

# 卷积层使用 torch.nn.Conv2d
# 激活层使用 torch.nn.ReLU
# 池化层使用 torch.nn.MaxPool2d
# 全连接层使用 torch.nn.Linear

class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv1 = nn.Sequential(     #input_size=(1*28*28)
            nn.Conv2d(1, 6, 5, 1, 2),   #padding=2保证输入输出尺寸相同
            nn.ReLU(),      #input_size=(6*28*28)
            nn.MaxPool2d(kernel_size=2, stride=2),#output_size=(6*14*14)
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(6, 16, 5),
            nn.ReLU(),      #input_size=(16*10*10)
            nn.MaxPool2d(2, 2)  #output_size=(16*5*5)
        )
        self.fc1 = nn.Sequential(
            nn.Linear(16 * 5 * 5, 120),
            nn.ReLU()
        )
        self.fc2 = nn.Sequential(
            nn.Linear(120, 84),
            nn.ReLU()
        )
        self.fc3 = nn.Linear(84, 10)

    # 定义前向传播过程,输入为x
    def forward(self, x):
        # show_graph(x,'origin')
        x = self.conv1(x)
        # show_graph(x,'conv1')
        x = self.conv2(x)
        # show_graph(x,'conv2')
        x = x.view(x.size()[0], -1)
        x = self.fc1(x)
        x = self.fc2(x)
        x = self.fc3(x)
        return x

前向传播内容:

  • 首先经过 self.conv1() 和 self.conv2() 进行卷积处理
  • 然后进行 x = x.view(x.size()[0], -1),对参数实现扁平化(便于后面全连接层输入)
  • 最后通过 self.fc1() 和 self.fc2() 定义的全连接层进行最后的分类

训练模型

#定义学习率
LR = 0.001
#定义是否使用GPU
device = torch.device('cuda' if torch.cuda.is_available else 'cpu')

# 定义损失函数loss function 和优化方式(采用SGD)
net = LeNet().to(device)
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9)

def train(net,criterion,optimizer):
    writer = SummaryWriter('./homework1/LeNet-5')
    for epoch in range(EPOCH):
        sum_loss = 0.0
        # 数据读取
        for i, data in enumerate(trainloader):
            inputs, labels = data
            inputs, labels = inputs.to(device), labels.to(device)

            # 梯度清零
            optimizer.zero_grad()

            # forward + backward
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            # 每训练100个batch打印一次平均loss
            sum_loss += loss.item()
            if i % 100 == 99:
                print('[%d, %d] loss: %.03f'
                    % (epoch + 1, i + 1, sum_loss / 100))
                writer.add_scalar('epoch%d-batch_loss'%(epoch+1),sum_loss/100,i/100)
                sum_loss = 0.0
        # 每跑完一次epoch测试一下准确率
        with torch.no_grad():
            correct = 0
            total = 0
            for data in testloader:
                images, labels = data
                images, labels = images.to(device), labels.to(device)
                outputs = net(images)
                # print(outputs.shape)

                # 取得分最高的那个类
                _, predicted = torch.max(outputs.data, 1)
                total += labels.size(0)
                correct += (predicted == labels).sum()
            print('第%d个epoch的识别准确率为:%d%%' % (epoch + 1, (100 * torch.true_divide(correct,total))))
    #模型参数保存
    torch.save(net, './homework1/weights/model.pth') 

测试模型

def test(weights,index):
    model = torch.load(weights)
    img = testset.__getitem__(index)[0].reshape(1,1,28,28).cuda()
    label = testset.targets[index]
    output = model(img)
    _, predicted = torch.max(output.data, 1)
    print('predicted:{},label:{}'.format(predicted.item(),label.data))

训练以及测试情况
在这里插入图片描述

从结果上看98%的准确率还是可以的。

拓展
1.运用tensorboardX可视化loss变化情况
导入相应的依赖库

from tensorboardX import SummaryWriter
  • 第一次epoch训练后loss在这里插入图片描述

  • 第二次epoch训练后loss
    在这里插入图片描述

  • 第八次epoch训练后loss
    在这里插入图片描述

2.运用tensorboardX展示LeNet-5网络结构

在这里插入图片描述

3.展示中间层特征图
函数定义

def show_graph(x, string)

其中x为中间层输出的结果
效果展示

  • 原图
    在这里插入图片描述

  • 一次卷积过后(卷积,relu,池化)
    在这里插入图片描述

  • 两次卷积过后(卷积,relu,池化)

在这里插入图片描述

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值