使用origin绘制箱线图

1、输入数据,截图如下:

图1

如图1所示,我只绘制Y轴,已经将A(X)列删除。

2、选中所有数据列或者你想要绘制的数据列,首先点击“绘图”按钮,其次选择“箱线图的下拉框”,随后选择“箱线图+点重叠”按钮,如下图2的红色画圈处。绘制后的图像见图3。

图2

图3 

3、对图3的图片进行调整,如下步骤所示:

3.1 删除Legend,选中点击“delete”即可,如图4-图5所示:

图4

图5

3.2 双击图片上的某个图,进入“绘图细节-绘图属性”界面,点击“箱体”,随后进入箱体设计界面,在该界面,类型中选择“箱体”,将“异常值”的复选框勾上,如图6所示。图7为设置后的图

图6

图7

3.3 点击线条界面,须线样式选择“实线”,线帽长度选择“60”,线帽样式为“实线”,中值线勾上,选择“实线”,均值线勾上,选择“点划线”,具体见图8。图9为调整后的图。

图8

图9

3.4 自定义箱体颜色和图案,见下图。

图10

3.5 设置边框样式,比较简单,直接用图显示。

图11

图12

图13

图14

3.6 最终的箱线图如下所示:

总结:绘制箱线图的步骤如上所述,您也可以根据自己的喜好进行一定的微调。

祝你在科研路上顺顺利利~·~~·~··

### 使用 Matplotlib 和 Seaborn 绘制箱线图并进行数据拟合 #### 使用 Matplotlib 绘制箱线图 Matplotlib 提供了 `boxplot` 方法来创建箱线图。下面是一个简单的例子展示如何使用 Matplotlib 创建箱线图: ```python import matplotlib.pyplot as plt import numpy as np # 构造一些随机数作为样本数据 np.random.seed(19680801) data = np.random.normal(size=(100,)) fig, ax = plt.subplots() ax.boxplot(data) plt.title('Box plot using Matplotlib') plt.ylabel('Value') plt.show() ``` 为了进一步增强图形的表现力,可以在同一张图上叠加其他统计信息或趋势线[^1]。 #### 结合 Seaborn 进行更高级的数据分析与可视化 Seaborn 是基于 Matplotlib 的高层次接口库,在处理复杂统计数据方面更为便捷。对于想要在同一图表内完成箱形图绘制以及回归模型拟合的情况,Seaborn 可以轻松实现这一目标: ```python import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt tips = sns.load_dataset("tips") # 加载内置的小费数据集 sns.boxplot(x="day", y="total_bill", data=tips) # 绘制按天分类的总账单金额箱型图 # 添加一条表示平均值的趋势线 (这里采用的是OLS最小二乘法直线拟合) sns.regplot(x="tip", y="total_bill", data=tips, scatter=False, color='red', label='Linear Fit') plt.legend() plt.title('Box plots with linear fit on tips dataset') plt.xlabel('Day of Week') plt.ylabel('Total Bill ($)') plt.show() ``` 上述代码片段展示了如何利用 Seaborn 库中的 `regplot()` 函数来进行简单的一元线性回归拟合,并将其结果显示在一个包含多个类别分组箱线图的画面里[^2]。 通过这种方式不仅可以直观地观察到各组之间的分布差异,还能理解变量间可能存在的关系模式。值得注意的是,实际应用时应根据具体需求调整参数设置,比如改变颜色方案、修改轴标签文字等,以便更好地适应特定场合下的表达目的[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值