【多因子分组箱线图】:附Origin详细画图教程

图片

目录

No.1 理解箱线图

1 什么是箱线图

2 箱线图的组成

No.2 画图流程

1 导入数据并绘图

2 设置绘图细节

3 设置坐标轴

4 效果图


No.1 理解箱线图

1 什么是箱线图

  • 箱线图,又称箱形图、盒须图或盒式图,用于体现数据分散情况的统计图。在视觉上辅助读者直观地看到每个数据中心位置、散布范围以及异常值等信息。

2 箱线图的组成

  • 箱体:下图方框形状的位置即为箱体,箱体下侧边界和上侧边界分别表示数据的下四分位数(Q1)到上四分位数(Q3)。箱体内的水平横线为中位数(Q2),若横线位于箱体中心,则数据分布对称;若横线不在中心,则数据可能偏斜。
  • 须线:从箱体上下两端延伸出去,连接的两根水平横线,分别表示数据的最大值和最小值。
  • 异常值:须线之外的点表示异常值,通常是区别于整体数据特征的数
### 如何在箱线图中实现填充效果 在 Python 的 `matplotlib` 和 `seaborn` 库中,虽然默认情况下箱线图不会显示填充颜色,但可以通过设置参数来调整这一点。对于 `seaborn` 绘制的箱线图,默认会带有一定透明度的颜色填充。 为了更具体地控制箱线图中的填充效果,可以使用如下方法: #### 方法一:通过修改 `sns.boxplot()` 参数 可以直接指定 `palette` 或者 `color` 参数来自定义箱体的颜色[^1]。这不仅能够改变线条样式,还能影响到内部区域的填充色彩。 ```python import seaborn as sns import matplotlib.pyplot as plt # 加载Seaborn内置的数据集 iris = sns.load_dataset("iris") # 设置调色板并绘制带填充的箱线图 sns.boxplot(x='species', y='sepal_length', data=iris, palette="Set3") plt.show() ``` #### 方法二:利用 `ax.artists` 修改现有对象属性 如果已经创建了一个箱形图实例,则可通过访问其艺术家列表 (`artists`) 来单独调整各个部分的颜色和其他视觉特性[^2]。 ```python fig, ax = plt.subplots() # 创建基础箱线图 box_plot = sns.boxplot(x='species', y='sepal_length', data=iris) # 获取当前轴上的所有Artist对象(即每个箱子),并对它们逐一设定新的面漆颜色 for artist in box_plot.artists: # Set the face color of each box to light blue with some transparency(alpha) artist.set_facecolor((0.87, 0.92, 0.97)) plt.show() ``` 这两种方式都可以有效地实现在箱线图内的填充效果,并且可以根据实际需求灵活选择适合的方法来进行自定义配置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值