LLaMA-Factory 模型微调指令参数详解

llamafactory-cli train \
# 指定训练阶段为监督微调(Supervised Fine-Tuning,SFT)。在监督微调阶段,模型会根据有标签的数据进行训练,
# 调整模型参数以更好地适应特定任务,例如自然语言生成、文本分类等任务。一般在预训练模型基础上进行微调时使用。
--stage sft \
# 开启训练,如果设置为False则不进行训练。当需要查看模型配置效果、检查数据预处理流程或进行一些非训练性的测试时,
# 可将其设置为False。在实际训练模型时,将其设为True。
--do_train True \
# 指定预训练模型的名称或路径,这里使用的是DeepSeek公司的一个蒸馏后的15亿参数模型deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B。
# 在选择模型时,需根据任务需求和资源情况进行决策。如果任务对模型大小和计算资源有限制,应选择合适规模的模型;
# 如果任务对精度要求较高,可选择性能更好的模型。
--model_name_or_path deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B \
# 设置数据预处理的线程数为16,增加线程数可以加快数据预处理速度,但会消耗更多CPU资源。在服务器CPU核心较多且资源充足时,
# 可适当增大该值以提高数据处理效率;若服务器资源紧张,应降低该值,避免影响其他进程的运行。
--preprocessing_num_workers 16 \
# 选择微调的类型为LoRA(Low-Rank Adaptation),这是一种低秩适应技术,在微调时可以减少参数量和计算量。
# LoRA适用于资源有限的场景,在保持模型性能的同时降低训练成本。如果对模型训练速度和资源消耗较为敏感,可优先选择LoRA微调。
--finetuning_type lora \
# 使用名为deepseek3的模板,模板用于构建输入模型的提示格式等。不同的模板会影响模型对输入数据的理解和处理方式,
# 应根据任务特点和数据集结构选择合适的模板。如果数据集具有特定的格式或要求,可能需要自定义模板。
--template deepseek3 \
# 自动决定是否使用Flash Attention技术,这是一种高效的注意力计算方法,可优化训练过程中的内存和计算效率。
# 在GPU支持且模型计算量较大时,Flash Attention能够显著提升训练速度;若GPU不支持或模型规模较小,自动模式可能会选择不使用。
--flash_attn auto \
# 指定数据集所在的目录为当前目录下的data文件夹。确保该目录存在且包含正确的数据集文件,数据文件格式需与框架要求一致。
# 如果数据集路径错误,模型将无法读取数据进行训练。
--dataset_dir data \
# 指定使用名为identity的数据集。数据集的选择应与任务相匹配,不同的数据集包含不同的样本和标签信息,
# 会对模型训练效果产生重大影响。在选择数据集时,要充分考虑数据的质量、规模和多样性。
--dataset identity \
# 设置输入序列的最大长度为2048个token,超过这个长度的部分会被截断。该值需根据模型的能力和任务需求进行调整。
# 如果输入文本通常较长且模型能够处理,可适当增大该值;若模型对长序列处理能力有限或资源紧张,应减小该值。
--cutoff_len 2048 \
# 设置学习率为0.00005,学习率控制模型参数更新的步长。学习率过大可能导致模型在训练过程中跳过最优解,出现不收敛的情况;
# 学习率过小则训练速度缓慢,需要更多的训练时间和资源。在调参过程中,通常会尝试不同的学习率,观察模型的收敛情况和性能表现。
--learning_rate 5e-05 \
# 设置训练的轮数为3轮,即模型会对整个训练数据集进行3次完整的学习。训练轮数过多可能导致过拟合,
# 而过少则模型可能无法充分学习数据特征。在实际应用中,需要根据数据集大小、模型复杂度和训练效果调整训练轮数。
--num_train_epochs 3.0 \
# 最多使用100000个样本进行训练,若数据集中样本数多于该值,则只会选取前100000个样本。
# 当数据集非常大时,可通过设置该参数减少训练样本数量,加快训练速度,但可能会损失部分信息;
# 若数据集较小,可适当增大该值以充分利用数据。
--max_samples 100000 \
# 设置每个设备上的训练批次大小为2,批次大小影响模型训练时每次处理的数据量和内存占用。
# 批次越大,模型在一次更新中学习的信息越多,训练速度可能加快,但对内存的需求也越大;
# 批次越小,内存占用少,但训练速度可能较慢。需根据设备内存情况和模型收敛速度调整批次大小。
--per_device_train_batch_size 2 \
# 梯度累积步数设置为8,即每8次前向和反向传播后才更新一次模型参数,可模拟更大的批次大小,提高训练稳定性。
# 当设备内存有限无法设置较大批次大小时,可通过增大梯度累积步数来模拟大批次训练效果,但会增加训练时间。
--gradient_accumulation_steps 8 \
# 学习率调度器类型选择为余弦退火(cosine),在训练过程中动态调整学习率,帮助模型更好地收敛。
# 余弦退火调度器在训练初期使用较大学习率加快收敛速度,在接近最优解时逐渐减小学习率,使模型更精确地收敛到最优解。
# 对于训练周期较长的任务,这种调度器通常能取得较好的效果。
--lr_scheduler_type cosine \
# 最大梯度范数设置为1.0,用于梯度裁剪,防止梯度爆炸,确保训练过程的稳定性。
# 当梯度值过大时,可能会导致模型参数更新不稳定,甚至使模型无法收敛。通过设置合理的梯度裁剪阈值,可以避免这种情况。
# 如果模型训练过程中出现梯度爆炸的迹象,可适当减小该值;若模型收敛过慢,可尝试增大该值,但要谨慎操作。
--max_grad_norm 1.0 \
# 每训练5步记录一次日志,方便监控训练过程中的各种指标,如损失值、准确率等。
# 记录频率过高会产生大量日志文件,占用存储空间;记录频率过低则可能无法及时发现训练过程中的问题。
# 可根据训练时长和关注的指标调整记录频率。
--logging_steps 5 \
# 每训练100步保存一次模型检查点,以便后续恢复训练或评估模型。保存频率过高会占用大量存储空间,
# 保存频率过低可能会丢失中间重要的模型状态。在实际应用中,可根据训练时间和资源情况设置保存频率,
# 同时可以结合备份策略,防止数据丢失。
--save_steps 100 \
# 学习率预热步数设置为0,预热是在训练初期以较低学习率训练模型,这里不进行预热。
# 在一些情况下,预热可以帮助模型更稳定地开始训练,避免在训练初期因学习率过大导致模型不稳定。
# 如果模型在训练初期出现波动较大的情况,可尝试增加预热步数。
--warmup_steps 0 \
# 不使用打包技术,打包技术可以提高训练效率,但会增加数据处理的复杂性。
# 对于简单任务或对训练效率要求不高的场景,可不使用打包技术;在处理大量短序列数据且追求高效训练时,可考虑使用打包技术。
--packing False \
# 不将训练进度等信息报告到外部工具,如不使用TensorBoard等进行可视化监控。
# 如果需要实时监控训练过程中的各种指标变化,如损失值、准确率随训练步数的变化情况,可配置相应的报告工具,
# 如将该参数设置为TensorBoard的相关地址和端口,以实现可视化监控。
--report_to none \
# 指定训练结果和模型保存的输出目录为saves\DeepSeek-R1-1.5B-Distill\lora\train_2025-03-26-09-56-13。
# 确保该目录存在或具有可创建目录的权限,否则模型训练结果无法保存。在多任务训练或多次实验时,
# 可以通过修改输出目录来区分不同的训练结果。
--output_dir saves\DeepSeek-R1-1.5B-Distill\lora\train_2025-03-26-09-56-13 \
# 启用BF16(Brain Floating Point 16)混合精度训练,可减少内存占用,加快训练速度。
# 若GPU支持BF16计算,启用该选项可以在不损失太多精度的情况下提升训练效率。但在一些对精度要求极高的任务中,
# 可能需要谨慎使用,或进行精度验证。
--bf16 True \
# 开启绘制损失曲线功能,便于直观查看训练过程中损失值的变化。损失曲线可以反映模型的学习情况,
# 如果损失值持续下降,说明模型在不断学习;若损失值出现波动或上升,可能表示模型出现了问题,如过拟合。
--plot_loss True \
# 信任远程代码,在使用远程模型或代码时,允许加载和执行可能存在风险的代码。
# 在使用来自不可信源的代码或模型时,要谨慎开启该选项,避免潜在的安全风险。若使用的是官方或可信的模型和代码,
# 可根据实际情况开启。
--trust_remote_code True \
# 设置分布式训练的超时时间为180000000秒,防止因网络延迟等问题导致训练进程长时间等待而中断。
# 在分布式训练环境中,网络状况复杂多变,合理设置超时时间可以确保训练的稳定性。如果网络环境较好,
# 可适当减小该值;若网络不稳定,应增大该值,避免训练因短暂的网络波动而中断。
--ddp_timeout 180000000 \
# 统计并记录训练过程中已处理的输入token数量,用于调试或性能分析。在调试模型时,通过查看输入token数量,
# 可以分析模型对不同长度输入的处理情况,检查是否存在数据加载或处理异常;在性能分析方面,可用于评估模型的计算资源消耗。
--include_num_input_tokens_seen True \
# 选择AdamW优化器(基于PyTorch实现),用于更新模型参数,帮助模型学习。AdamW优化器结合了Adam优化器的优点,
# 并对权重衰减进行了改进,在多种任务中表现良好。在调参时,还可以尝试其他优化器,如SGD、Adagrad等,
# 比较不同优化器对模型训练效果和收敛速度的影响。
--optim adamw_torch \
# 设置LoRA的秩为8,秩越小,引入的额外参数量越少,计算开销也越小,但可能会影响模型的表达能力。
# 在调参时,需要根据任务的复杂程度和对模型性能的要求来调整LoRA的秩。对于简单任务或资源受限的情况,
# 可以尝试较小的秩;对于复杂任务,可能需要适当增大秩以保证模型的效果。
--lora_rank 8 \
# LoRA的比例因子设置为16,用于缩放低秩矩阵的贡献,较大的值可能增强微调效果,但也可能增加过拟合风险。
# 在调整该参数时,要结合LoRA的秩和训练数据的特点进行。如果发现模型出现过拟合迹象,可适当减小比例因子;
# 若模型学习效果不明显,可尝试增大该值。
--lora_alpha 16 \
# LoRA层的dropout概率设置为0,即不使用dropout正则化,增大该值可增强模型的泛化能力,减少过拟合。
# 在训练过程中,如果模型在训练集上表现良好,但在验证集上效果不佳,可能存在过拟合问题,此时可尝试增大dropout概率;
# 如果模型收敛困难或训练速度过慢,可适当减小该值或保持为0。
--lora_dropout 0 \
# 指定LoRA微调的目标层为所有层,也可以指定特定层进行微调。选择特定层进行微调可以聚焦于模型的关键部分,
# 减少不必要的计算量。在一些任务中,某些层对任务的影响更大,可针对这些层进行微调;若对模型结构不太了解,
# 可先尝试对所有层进行微调,观察训练效果后再进行调整。
--lora_target all
一、模型选择与路径设置
- 模型名称与路径:选择模型为Qwen2.5-7B-Instruct,建议下载后填入绝对路径,避免使用相对路径,因其难以把控。在Hugging Face或ModelScope路径下下载模型,下载后存储在相对路径
root/.cache/hub或root/.cache/modelscope下。 - 输出路径:训练完成后,LoRA训练生成的小块会存储在指定输出路径。该路径是相对路径,基于启动命令
llamafactory-cli的位置,一般在llama_factory同级目录下的saves文件夹中,自动生成的路径包含当前点击预览命令的时分秒。若在界面执行,修改路径需在相应位置操作;若在后端执行,则可自由修改 。
二、训练参数设置
- 基本训练参数
- 训练阶段与训练开关:
stage sft指定训练阶段为监督微调(SFT),do_train True表示进行训练,false则不训练。此设置在框架中较为灵活,可用于在界面点击运行,也可将命令复制到shell或yaml文件中在后端执行 。 - 数据处理线程数:
preprocessing_num_workers指定处理数据时使用的线程数,调大耗费资源但处理速度快,调小则相反。通常设置为总核数减1或减2 。 - 数据集路径与名称:
dataset_dir指定数据集目录,为相对路径;dataset指定使用的数据集,多个数据集用英文逗号分隔 。 - 输入长度与样本数量:
cutoff_len指定输入序列的最大长度,调大会占用更多资源但能保留更多上下文信息,调小则节省资源但可能导致上下文不连贯;max_samples指定最多使用的样本数量,增大样本数可提供更多训练信号,但可能导致过拟合,减少样本数可能导致欠拟合 。
- 训练阶段与训练开关:
- 训练轮数与批次大小
- 训练轮数:
num_epochs根据数据集大小调整训练轮数,如数据量较大,3轮即可;数据量较小,可适当增加轮数,但可能存在过拟合风险 。 - 批次大小:
batch_size批次大小影响模型学习效果和资源消耗。批次大,一次学习内容多但资源需求大;批次小,每次学习内容少但资源消耗小,学习次数增多。需根据服务器资源调整,若仅作测试,可将批次大小设为1 。
- 训练轮数:
- 梯度与学习率相关参数
- 梯度累积步数:
gradient_accumulation_steps指定梯度累积步骤数,用于模拟更大或更小的批次大小,可增加训练稳定性,但会增加内存使用和训练时间 。 - 学习率:
learning_rate指定学习率,如5e-05表示0.00005 ,e后数字表示小数点往前移动的位数。学习率过大可能导致模型在损失函数最小值附近震荡或发散,过小则容易欠拟合 。 - 学习率调度器:
lr_scheduler_type指定学习率调度器类型,如cosine(余弦退火)适合训练周期较长的任务,可避免训练后期震荡;Constant适合模型已预训练只需微调的任务 。 - 学习预热步数:
warmup_steps指定学习率预热步数,默认值为0 ,一般根据个人需求设置,多数情况下可使用默认值 。
- 梯度累积步数:
- 其他训练相关参数
- 日志记录与模型保存:
logging_steps指定每多少步记录一次日志,步数大记录频率低、占用资源少,步数小则记录更详细、占用资源多;save_steps指定每多少步保存一次模型检查点,同样存在频率与资源占用的平衡问题 。 - 打包技术:
packing指定是否使用打包技术,通常不使用,因其虽可提高训练效率,但会增加数据处理复杂性,初期操作建议保持默认 。 - 报告方式:
report_to指定报告训练进度的方式,none表示不报告,若设置为如TensorBoard的地址和端口,可查看更丰富的张量、损失率等信息 。
- 日志记录与模型保存:
- 优化器与精度参数
- 混合精度训练:
fp16 True指定使用混合精度训练,若选择fp32,在命令中不会显示相关设置;选择其他精度(如fp8、bf16等)会正常显示 。 - 优化器类型:
optim adamw_torch指定优化器类型为Adamw,此设置在其他参数一栏中以kv形式存在,属于进阶操作,初期不建议修改,以免报错 。
- 混合精度训练:
- LoRA相关参数
- 微调类型:
finetuning_type lora指定微调类型为LoRA(Low - Rank Adaptation),也可选择如冻结等其他类型 。 - LoRA秩:
lora_rank指定LoRA的秩,如设置为8 ,并非越大越好,需根据实际效果调整,秩越小参数量和计算开销越小 。 - 比例因子:
lora_alpha指定LoRA的比例因子,用于缩放低秩矩阵的贡献,值越大微调效果可能越强,但也可能导致过拟合 。 - dropout概率:
lora_dropout指定LoRA的dropout概率,调大增加模型泛化能力、减少过拟合,调小则减少正则化、可能提高模型表达能力 。 - 目标层:
lora_target all指定LoRA的目标层为所有层,也可指定特定层(如q_proj、v_proj、k_proj、fc层)进行调整 。
- 微调类型:
- 其他配置参数
- 模板选择:
template qwen根据模型类型选择模板,若为基座大模型可选择default,若为当前系列模型则选择对应模板,若没有合适模板也可注册新模板 。 - 加速选项:
flash_attn auto在0.9版本中增加了加速内容,一般选择auto即可,若熟悉transformer结构,可自定义选择 。 - 绘制损失曲线:
plot_loss True指定绘制损失曲线,曲线横轴表示训练迭代次数,纵轴表示损失率。通过观察曲线,若一直波动说明模型学习效果不佳;若快速降低后不再上升,可能出现过拟合 。
- 模板选择:
三、训练过程与监控
- 保存训练参数:完成参数设置后,可点击保存训练参数,系统会在启动命令相对目录下的
config文件夹中,根据当前日期生成命令参数文件 。 - 训练启动与显存使用:点击开始训练后,可观察到后端模型对显存的使用情况。如使用7B模型时,若设置的批次大小不合理,可能导致显存占用过高。若资源不足,可将批次大小设置为1 。
- 训练时间与结果验证:本次训练验证使用了约30分钟完成对训练集的验证 。
四、llamafactory微调参数及作用汇总
| 参数名称 | 参数作用 | 取值建议及注意事项 |
|---|---|---|
stage | 指定训练阶段,如监督微调(SFT) | 通常根据任务需求选择,微调任务多选用SFT |
do_train | 确定是否进行训练,True为训练,False为不训练 | 根据实际需求设置,若仅查看配置效果可设为False |
model_name_or_path | 指定预训练模型的路径 | 建议使用绝对路径,确保模型路径准确无误 |
output_dir | 指定训练结果和日志的输出目录 | 为相对路径,基于启动命令位置,自动生成包含时间的路径,可按需修改 |
preprocessing_num_workers | 设定预处理数据时使用的线程数 | 一般设为总核数减1或减2,根据服务器资源和处理速度需求调整 |
dataset_dir | 指定数据集所在目录 | 为相对路径,需确保数据集路径正确 |
dataset | 指定使用的数据集,可多个并用逗号分隔 | 根据任务选择合适数据集,注意数据集格式及兼容性 |
cutoff_len | 规定输入序列的最大长度 | 调大占用更多资源但保留更多上下文,调小节省资源但可能丢失上下文,根据模型性能和资源情况调整 |
max_samples | 指定最多使用的样本数量 | 增大可提供更多训练信号,但可能过拟合;减小可能欠拟合,需根据数据集和模型情况调整 |
gradient_accumulation_steps | 指定梯度累积步骤数,模拟更大或更小批次大小 | 增加可提高模型稳定性,但会增加内存使用和训练时间,根据硬件资源和训练需求设置 |
learning_rate | 设定学习率,如5e-05表示0.00005 | 学习率过大可能导致模型震荡或发散,过小易欠拟合,需根据模型训练情况微调 |
lr_scheduler_type | 指定学习率调度器类型,如cosine(余弦退火)、Constant等 | cosine适合长周期训练,避免后期震荡;Constant适合已预训练只需微调的任务,根据训练场景选择 |
warmup_steps | 指定学习率预热步数 | 默认值为0,一般根据个人需求设置,多数情况可使用默认值 |
logging_steps | 指定每多少步记录一次日志 | 步数大记录频率低、占用资源少;步数小记录更详细、占用资源多,根据需求平衡 |
save_steps | 指定每多少步保存一次模型检查点 | 与logging_steps类似,需平衡保存频率和资源占用 |
packing | 指定是否使用打包技术 | 通常不使用,使用可提高训练效率但增加数据处理复杂性,初期建议保持默认 |
report_to | 指定报告训练进度的方式,如none、TensorBoard地址和端口等 | none表示不报告,设置为TensorBoard相关信息可查看更多训练信息 |
fp16 | 指定是否使用混合精度训练 | 选择fp16开启,选择fp32在命令中不显示相关设置,其他精度(如fp8、bf16等)正常显示 |
optim | 指定优化器类型,如adamw_torch | 属于进阶操作,初期不建议修改,以免报错,根据模型和任务选择合适优化器 |
finetuning_type | 指定微调类型,如lora、freeze等 | 根据需求选择,lora为低秩适应微调,可有效减少参数量和计算量 |
lora_rank | 指定LoRA的秩,如设置为8 | 并非越大越好,需根据实际效果调整,秩越小参数量和计算开销越小 |
lora_alpha | 指定LoRA的比例因子 | 用于缩放低秩矩阵贡献,值越大微调效果可能越强,但可能导致过拟合 |
lora_dropout | 指定LoRA的dropout概率 | 调大增加模型泛化能力、减少过拟合;调小减少正则化、可能提高模型表达能力 |
lora_target | 指定LoRA的目标层,如all、q_proj、v_proj、k_proj、fc等 | all表示所有层,也可指定特定层进行调整,根据模型结构和微调需求选择 |
template | 根据模型类型选择模板 | 若为基座大模型可选择defOT,当前系列模型选择对应模板,无合适模板可注册新模板 |
flash_attn | 指定是否使用Flash Attention,如auto | 一般选择auto,若熟悉transformer结构,可自定义选择,以优化训练速度 |
plot_loss | 指定是否绘制损失曲线 | 设置为True绘制,通过观察曲线可了解模型训练效果,判断是否过拟合或欠拟合 |
ddp_timeout | 指定分布式训练的超时时间 | 更大的超时时间可以给进程更多的时间来同步,避免因网络延迟或计算差异导致的训练中断;设置过小,可能因为某些网络动荡而造成训练中断。具体取值需根据网络环境和训练需求调整,如网络不稳定时可适当增大该值 |
以下是 llama_factory 中补充的参数的表格总结,方便查阅和使用:
补充参数表格
| 参数类别 | 参数名 | 类型 | 默认值 | 描述 |
|---|---|---|---|---|
| 模型保存与加载 | save_best_model | bool | False | 是否保存验证集上表现最好的模型。 |
resume_from_checkpoint | str | None | 从指定的检查点恢复训练。 | |
save_format | str | pytorch | 模型保存的格式(如 pytorch 或 huggingface)。 | |
| 数据增强与正则化 | data_augmentation | bool | False | 是否启用数据增强。 |
weight_decay | float | 0.0 | 权重衰减系数,用于 L2 正则化。 | |
dropout_rate | float | 0.1 | Dropout 概率,用于防止过拟合。 | |
| 硬件与性能优化 | gradient_checkpointing | bool | False | 是否启用梯度检查点,以减少 GPU 内存占用。 |
local_rank | int | 0 | 分布式训练时的本地 GPU 编号。 | |
bf16 | bool | False | 是否使用 BF16 混合精度训练。 | |
| 评估与验证 | eval_steps | int | 500 | 每多少步进行一次验证。 |
eval_ratio | float | 0.1 | 验证集占训练集的比例。 | |
metrics | str | accuracy | 评估模型性能的指标(如 accuracy 或 f1)。 | |
| 日志与调试 | debug | bool | False | 是否启用调试模式,输出更详细的日志。 |
log_dir | str | ./logs | 日志文件的保存目录。 | |
disable_progress_bar | bool | False | 是否禁用训练进度条。 | |
| LoRA 微调高级参数 | lora_init | str | normal | LoRA 参数的初始化方式(如 normal 或 zero)。 |
lora_modules | str | attention | 指定 LoRA 微调的模块(如 attention 或 feedforward)。 | |
lora_learning_rate | float | 1e-4 | LoRA 参数的独立学习率。 | |
| 模板与提示 | prompt_template | str | default | 使用的提示模板(如 default 或 custom)。 |
template_args | str | {} | 提示模板的参数,以 JSON 格式提供。 | |
| 其他高级参数 | max_steps | int | None | 最大训练步数,优先级高于 num_epochs。 |
seed | int | 42 | 随机种子,用于确保实验可复现。 | |
disable_cache | bool | False | 是否禁用数据缓存。 |
1974

被折叠的 条评论
为什么被折叠?



