二、一元多项式
定义2 设n是一非负整数.形式表达式
a n x n + a n − 1 x n − 1 + ⋯ + a 0 , ( 1 ) a_nx^n + a_{n-1}x^{n-1} + \dots +a_0,(1) anxn+an−1xn−1+⋯+a0,(1)
其中 a 0 , a 1 , … , a n a_0,a_1,\dots,a_n a0,a1,…,an全属于数域 P P P,称为系数在数域 P P P中的一个一元多项式,或者简称为数域 P P P上的一个一元多项式.
a i x k a_ix^k aixk称为k次项, a i a_i ai称为k次项系数.用 f ( x ) , g ( x ) , … f(x),g(x),\dots f(x),g(x),…或 f , g , … f,g,\dots f,g,…来代表多项式.
定义3 如果多项式 f ( x ) f(x) f(x)与 g ( x ) g(x) g(x)中,除去系数为零的项外,同次项的系数全相等,那么 f ( x ) f(x) f(x)与 g ( x ) g(x) g(x)就称为相等,记为
f ( x ) = g ( x ) f(x) = g(x) f(x)=g(x)
系数全为零的多项式称为零多项式,记为0.
在(1)中,如果 a n = / 0 a_n{=}\mathllap{/\,}0 an=/0,那么 a n x n a_nx^n anxn称为多项式(1)的首项, a n a_n an称为首项系数.n称为多项式(1)的次数.零多项式是唯一不定义次数的多项式.多项式 f ( x ) f(x) f(x)的次数记为
∂ ( f ( x ) ) \partial (f(x)) ∂(f(x))
因为零多项式不定义次数,所以在用符号 ∂ ( f ( x ) ) \partial (f(x)) ∂(f(x)) 时,总是假定 f ( x ) = / 0 f(x){=}\mathllap{/\,}0 f(x)=/0.
为了方便计算和讨论
引入和号
设
f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 0 g ( x ) = b m x m + b m − 1 x m − 1 + ⋯ + b 0 f(x)=a_nx^n + a_{n-1}x^{n-1} + \dots +a_0 \\ g(x)=b_mx^m + b_{m-1}x^{m-1} + \dots +b_0 f(x)=an