高等代数学习笔记(二)多项式——一元多项式

文章介绍了数域P上的一元多项式定义,包括多项式的系数、次数和首项,以及多项式相等的条件。讨论了多项式的加法和乘法运算,展示了加法交换律、结合律、乘法交换律、结合律和分配律,并提出了乘法消去律。最后,定义了一元多项式闭环的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二、一元多项式

定义2 设n是一非负整数.形式表达式
a n x n + a n − 1 x n − 1 + ⋯ + a 0 , ( 1 ) a_nx^n + a_{n-1}x^{n-1} + \dots +a_0,(1) anxn+an1xn1++a0,1
其中 a 0 , a 1 , … , a n a_0,a_1,\dots,a_n a0,a1,,an全属于数域 P P P,称为系数在数域 P P P中的一个一元多项式,或者简称为数域 P P P上的一个一元多项式.
a i x k a_ix^k aixk称为k次项 a i a_i ai称为k次项系数.用 f ( x ) , g ( x ) , … f(x),g(x),\dots f(x),g(x), f , g , … f,g,\dots fg来代表多项式.

定义3 如果多项式 f ( x ) f(x) f(x) g ( x ) g(x) g(x)中,除去系数为零的项外,同次项的系数全相等,那么 f ( x ) f(x) f(x) g ( x ) g(x) g(x)就称为相等,记为
f ( x ) = g ( x ) f(x) = g(x) f(x)=g(x)
系数全为零的多项式称为零多项式,记为0.

在(1)中,如果 a n = /   0 a_n{=}\mathllap{/\,}0 an=/0,那么 a n x n a_nx^n anxn称为多项式(1)的首项, a n a_n an称为首项系数.n称为多项式(1)的次数.零多项式是唯一不定义次数的多项式.多项式 f ( x ) f(x) f(x)的次数记为
∂ ( f ( x ) ) \partial (f(x)) (f(x))
因为零多项式不定义次数,所以在用符号 ∂ ( f ( x ) ) \partial (f(x)) (f(x)) 时,总是假定 f ( x ) = /   0 f(x){=}\mathllap{/\,}0 f(x)=/0.

为了方便计算和讨论

引入和号

f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 0 g ( x ) = b m x m + b m − 1 x m − 1 + ⋯ + b 0 f(x)=a_nx^n + a_{n-1}x^{n-1} + \dots +a_0 \\ g(x)=b_mx^m + b_{m-1}x^{m-1} + \dots +b_0 f(x)=an

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值