高等代数 多项式环(第7章)1 一元多项式环,整除关系,带余除法

一.一元多项式环(7.1)
1.一元多项式
(1)一元多项式的定义:
在这里插入图片描述
(2)一元多项式的次数:
在这里插入图片描述
(3)一元多项式的运算:
在这里插入图片描述
在这里插入图片描述

另外,可以证明 K [ x ] K[x] K[x]是数域 K K K上的1个线性空间, K [ x ] K[x] K[x]的1个基是 { 1 , x , x 2 . . . } \{1,x,x^2...\} {1,x,x2...}
在这里插入图片描述

(4)一元多项式的和与积的次数:

命题1:设 f ( x ) , g ( x ) ∈ K [ x ] f(x),g(x)∈K[x] f(x),g(x)K[x],则 d e g ( f ( x ) ± g ( x ) ) ≤ m a x { d e g   f ( x ) , d e g   g ( x ) } ( 5 ) d e g ( f ( x ) g ( x ) ) = d e g   f ( x ) + d e g   g ( x ) ( 6 ) deg(f(x)±g(x))≤max\{deg\,f(x),deg\,g(x)\}\qquad(5)\\deg(f(x)g(x))=deg\,f(x)+deg\,g(x)\qquad(6) deg(f(x)±g(x))max{degf(x),degg(x)}(5)deg(f(x)g(x))=degf(x)+degg(x)(6)
在这里插入图片描述

推论1:设 f ( x ) , g ( x ) ∈ K [ x ] f(x),g(x)∈K[x] f(x),g(x)K[x],则
f ( x ) ≠ 0 且 g ( x ) ≠ 0 ⇒ f ( x ) g ( x ) ≠ 0 ( 7 ) f(x)≠0且g(x)≠0⇒f(x)g(x)≠0\qquad(7) f(x)=0g(x)=0f(x)g(x)=0(7)
\quad 从而 f ( x ) g ( x ) = 0 ⇒ f ( x ) = 0 或 g ( x ) = 0 f(x)g(x)=0⇒f(x)=0或g(x)=0 f(x)g(x)=0f(x)=0g(x)=0
K [ x ] K[x] K[x]中2个非零多项式的乘积的首项系数等于这2个多项式的首项系数的乘积

推论2: K [ x ] K[x] K[x]中的乘法适合消去律,即 f ( x ) g ( x ) = f ( x ) h ( x ) 且 f ( x ) ≠ 0 ⇒ g ( x ) = h ( x ) f(x)g(x)=f(x)h(x)且f(x)≠0⇒g(x)=h(x) f(x)g(x)=f(x)h(x)f(x)=0g(x)=h(x)
在这里插入图片描述

2.环的基本概念
在这里插入图片描述
(1)环的定义:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(2)常见的特殊类型的环:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注意:整环的概念中的"无零因子"是指没有非平凡的零因子,即整环是无零因子环

(3)环的同构:
在这里插入图片描述

命题2:若环 R R R到环 R ′ R' R有1个同构映射 σ σ σ,且 R R R有单位元 e e e,则 σ ( e ) σ(e) σ(e) R ′ R' R的单位元
在这里插入图片描述

3.子环
(1)定义:
在这里插入图片描述
在这里插入图片描述
(2)子环的判定

命题3:环 R R R的1个非空子集 R 1 R_1 R1为1个子环的充要条件是: R 1 R_1 R1对于 R R R的减法与乘法都封闭,即 a , b ∈ R 1 ⇒ a − b ∈ R 1 且 a b ∈ R 1 a,b∈R_1⇒a-b∈R_1且ab∈R_1 a,bR1abR1abR1
在这里插入图片描述
注意:子环中的单位元和原环中的单位元没有确定的关系,可能子环有单位元而圆环无,也可能反过来,还可能均有单位元但二者的单位元不同,也可能均无或均有且相同

(3)扩环:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

说明:条件2°就是说数域 K K K(也是1个环) ≅ R 1 \cong R_1 R1
在这里插入图片描述

4.一元多项式环 K [ x ] K[x] K[x]的通用性质
在这里插入图片描述

定理1:设 K K K是1个数域, R R R是1个有单位元 1 ′ 1' 1的交换环, R R R可看成是 K K K的1个扩环,其中 K K K R R R的子环 R 1 R_1 R1(含有 1 ′ 1' 1)的保持加法和乘法运算的双射(即同构映射)记作 σ σ σ;对 ∀ t ∈ R ∀t∈R tR,令 σ t : K [ x ] → R f ( x ) = ∑ i = 0 n a i x i → ∑ i = 0 n τ ( a i ) t i : = f ( t ) σ_t:K[x]→R\\f(x)=\displaystyle\sum_{i=0}^na_ix^i→\displaystyle\sum_{i=0}^nτ(a_i)t^i:=f(t) σt:K[x]Rf(x)=i=0naixii=0nτ(ai)ti:=f(t) σ t σ_t σt K [ x ] K[x] K[x] R R R的1个映射,且 σ t ( x ) = t σ_t(x)=t σt(x)=t,且 σ t σ_t σt保持加法和乘法运算,即如果在 K [ x ] K[x] K[x]中有 f ( x ) + g ( x ) = h ( x ) , f ( x ) g ( x ) = p ( x ) f(x)+g(x)=h(x),f(x)g(x)=p(x) f(x)+g(x)=h(x),f(x)g(x)=p(x)则在 R R R中有 f ( t ) + g ( t ) = h ( t ) , f ( t ) g ( t ) = h ( t ) f(t)+g(t)=h(t),f(t)g(t)=h(t) f(t)+g(t)=h(t),f(t)g(t)=h(t)映射 σ t σ_t σt称为x用t代入
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
定理意义:
在这里插入图片描述
关于不定元:
在这里插入图片描述
注意:从该定理证明 f ( t ) g ( t ) = p ( t ) f(t)g(t)=p(t) f(t)g(t)=p(t)的过程中看到,只要 R R R的元素 t t t可与 R ′ R' R的元素 τ ( a i )   ( a i ∈ K ) τ(a_i)\,(a_i∈K) τ(ai)(aiK)交换,就有此式成立,而不需要 R R R是交换环,即不需要 t 1 ∈ R t_1∈R t1R t 2 ∈ R t_2∈R t2R可交换;从而 R R R不必是交换环,只要 R R R的元素 t t t可与 R ′ R' R的元素 τ ( a i )   ( a i ∈ K ) τ(a_i)\,(a_i∈K) τ(ai)(aiK)交换,不定元 x x x就可用 t t t带入

在这里插入图片描述
二.整除关系与带余除法(7.2)
在这里插入图片描述
1.整除关系
(1)整除的定义:
在这里插入图片描述
(2)整除的性质:

从整除的定义易推出:
0   ∣   f ( x ) ⇔ f ( x ) = 0 0\,|\,f(x)⇔f(x)=0 0f(x)f(x)=0
在这里插入图片描述
②对 ∀ f ( x ) ∈ K [ x ] , f ( x )   ∣   0 ∀f(x)∈K[x],f(x)\,|\,0 f(x)K[x],f(x)0
在这里插入图片描述
③对 ∀ b ∈ K ∗ , ∀ f ( x ) ∈ K [ x ] , b   ∣   f ( x ) ∀b∈K^*,∀f(x)∈K[x],b\,|\,f(x) bK,f(x)K[x],bf(x)
在这里插入图片描述
注: K ∗ = K − { 0 } K^*=K-\{0\} K=K{0}

整除是集合 K [ x ] K[x] K[x]上的1个二元关系,具有
①反身性:对 ∀ f ( x ) ∈ K [ x ] , f ( x )   ∣   f ( x ) ∀f(x)∈K[x],f(x)\,|\,f(x) f(x)K[x],f(x)f(x)
在这里插入图片描述
②传递性:在 K [ x ] 中 , K[x]中, K[x], f ( x )   ∣   g ( x ) , g ( x )   ∣   h ( x ) f(x)\,|\,g(x),g(x)\,|\,h(x) f(x)g(x),g(x)h(x),则 f ( x )   ∣   h ( x ) f(x)\,|\,h(x) f(x)h(x)
在这里插入图片描述
注意:整除关系不具有对称性,即从 g ( x )   ∣   f ( x ) g(x)\,|\,f(x) g(x)f(x)不能推出 f ( x )   ∣   g ( x ) f(x)\,|\,g(x) f(x)g(x)

命题4:在 K [ x ] K[x] K[x]中,如果 g ( x )   ∣   f i ( x )   ( i = 1 , 2... s ) g(x)\,|\,f_i(x)\,(i=1,2...s) g(x)fi(x)(i=1,2...s),那么对于 ∀ u 1 ( x ) . . . u s ( x ) ∈ K [ x ] ∀u_1(x)...u_s(x)∈K[x] u1(x)...us(x)K[x],都有 g ( x )   ∣   [ u 1 ( x ) f 1 ( x ) + . . . + u s ( x ) f s ( x ) ] g(x)\,|\,[u_1(x)f_1(x)+...+u_s(x)f_s(x)] g(x)[u1(x)f1(x)+...+us(x)fs(x)]
在这里插入图片描述

命题5:在 K [ x ] K[x] K[x]中,若 g ( x )   ∣   f ( x ) g(x)\,|\,f(x) g(x)f(x) f ( x ) ≠ 0 f(x)≠0 f(x)=0,则 d e g   g ( x ) ≤ d e g   f ( x ) deg\,g(x)≤deg\,f(x) degg(x)degf(x)
在这里插入图片描述
注意:若 f ( x ) = 0 f(x)=0 f(x)=0,则该命题不成立

(3)相伴的定义:
在这里插入图片描述
(4)相伴的判定:

命题6:在 K [ x ] K[x] K[x]中, f ( x ) ∼ g ( x ) f(x)\sim g(x) f(x)g(x)当且仅当 ∃ c ∈ K ∗ ∃c∈K^* cK,使得 f ( x ) = c ⋅ g ( x ) f(x)=c·g(x) f(x)=cg(x)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
注: K ∗ = K − { 0 } K^*=K-\{0\} K=K{0}

2.带余除法
在这里插入图片描述
(1)带余除法:

定理2:设 f ( x ) , g ( x ) ∈ K [ x ] f(x),g(x)∈K[x] f(x),g(x)K[x] g ( x ) ≠ 0 g(x)≠0 g(x)=0,则在 K [ x ] K[x] K[x] ∃ ∃ 唯一的1对多项式 h ( x ) , r ( x ) h(x),r(x) h(x),r(x),使得 f ( x ) = h ( x ) g ( x ) + r ( x )   ( d e f   r ( x ) < d e g   g ( x ) ) ( 3 ) f(x)=h(x)g(x)+r(x)\,(def\,r(x)<deg\,g(x))\qquad(3) f(x)=h(x)g(x)+r(x)(defr(x)<degg(x))(3)其中 f ( x ) f(x) f(x)称为被除式, g ( x ) g(x) g(x)称为除式, h ( x ) h(x) h(x)称为商式, r ( x ) r(x) r(x)称为余式,(3)式称为除法算式
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
该定理表明:数域 K K K上的一元多项式环 K [ x ] K[x] K[x]是具有除法算式的环,除法算式是 K [ x ] K[x] K[x]中有关加法和乘法的第1个重要等式

(2)整除的判定:

推论1:设 f ( x ) , g ( x ) ∈ K [ x ] f(x),g(x)∈K[x] f(x),g(x)K[x] g ( x ) ≠ 0 g(x)≠0 g(x)=0,则 g ( x )   ∣   f ( x ) g(x)\,|\,f(x) g(x)f(x)当且仅当 g ( x ) g(x) g(x) f ( x ) f(x) f(x)的余式为0
在这里插入图片描述

命题7:设 f ( x ) , g ( x ) ∈ K [ x ] f(x),g(x)∈K[x] f(x),g(x)K[x],数域 F ⊇ K F\supe K FK,则 在 K [ x ] 中 , g ( x )   ∣   f ( x ) ⇔ 在 F ( x ) 中 , g ( x )   ∣   f ( x ) 在K[x]中,g(x)\,|\,f(x)⇔在F(x)中,g(x)\,|\,f(x) K[x],g(x)f(x)F(x),g(x)f(x)
在这里插入图片描述
该命题表明:整除性不随数域的扩大而改变(既不会因为数域扩大而变得可以整除,也不会因此而变得不能整除)
根本原因在于数域对四则运算封闭

注意:但如果数域缩小,可能变得不能整除,即仅有:
f ( x ) , g ( x ) ∈ F [ x ] f(x),g(x)∈F[x] f(x),g(x)F[x],数域 F ⊇ K F\supe K FK,则 在 K [ x ] 中 , g ( x )   ∣   f ( x ) ⇒ 在 F ( x ) 中 , g ( x )   ∣   f ( x ) 在K[x]中,g(x)\,|\,f(x)⇒在F(x)中,g(x)\,|\,f(x) K[x],g(x)f(x)F(x),g(x)f(x)而没有"⇐",因为 f ( x ) , g ( x ) , h ( x ) , r ( x ) f(x),g(x),h(x),r(x) f(x),g(x),h(x),r(x)均不一定属于 K [ x ] K[x] K[x]

(3)综合除法:
在这里插入图片描述
在这里插入图片描述
3.整数环中的带余除法:

定理3:对 ∀ a , b ∈ Z   ( b ≠ 0 ) ∀a,b∈Z\,(b≠0) a,bZ(b=0), ∃ ∃ 唯一1对 q , r ∈ Z q,r∈Z q,rZ,使得 a = q b + r   ( 0 ≤ r < ∣ b ∣ ) ( 17 ) a=qb+r\,(0≤r<|b|)\qquad(17) a=qb+r(0r<b)(17)
在这里插入图片描述

4. λ − λ- λ矩阵的相抵标准型(带余除法的应用之一)
(1)整环上的矩阵:
在这里插入图片描述
(2)相抵:
在这里插入图片描述
(3)相抵标准形:
在这里插入图片描述

定理4:任意1个非零的 n n n λ − λ- λ矩阵 A ( λ ) A(λ) A(λ)一定相抵于对角 λ − λ- λ矩阵 d i a g { d 1 ( λ ) , d 2 ( λ ) . . . d n ( λ ) } ( 18 ) diag\{d_1(λ),d_2(λ)...d_n(λ)\}\qquad(18) diag{d1(λ),d2(λ)...dn(λ)}(18)其中 d i ( λ )   ∣   d i + 1 ( λ )   ( i = 1 , 2... n − 1 ) d_i(λ)\,|\,d_{i+1}(λ)\,(i=1,2...n-1) di(λ)di+1(λ)(i=1,2...n1),并且对于非零的 d i ( λ ) d_i(λ) di(λ),其首项系数为1.满足这些要求的对角 λ − λ- λ矩阵 ( 18 ) (18) (18)称为 A ( λ ) A(λ) A(λ)的1个相抵标准形Smith标准形
在这里插入图片描述

在这里插入图片描述
定理5:整数环 Z Z Z上任意1个非零的 n n n A A A一定相抵于 Z Z Z上的对角矩阵 d i a g { d 1 , d 2 . . . d n } ( 22 ) diag\{d_1,d_2...d_n\}\qquad(22) diag{d1,d2...dn}(22)其中 d j ∈ N   ( j = 1 , 2... n ) d_j∈N\,(j=1,2...n) djN(j=1,2...n),并且 d i   ∣   d i + 1   ( i = 1 , 2... n − 1 ) d_i\,|\,d_{i+1}\,(i=1,2...n-1) didi+1(i=1,2...n1).满足这些要求的对角矩阵 ( 22 ) (22) (22)称为 A A A的1个相抵标准形Smith标准形
在这里插入图片描述

  • 6
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值