线性电阻电路解答的存在性与惟一性问题
- 一个模型是否如实地代表一个工作正常的实际电路,其必要条件是这一模型有唯一解。
- 模型的解答的不正常情况与实际电路的错误设计有关。
- 对线性电阻电路运用任意方法,最终都能得到一组 k k k个未知量的 k k k个线性代数方程组。从线性代数方程理论可知,对这样一组方程,其解答可能存在,也可能不存在(存在性);如果有解答,它可能有惟一解(惟一性),也可能有多个解。
线性电阻电路解答的存在性与惟一性定理
- 辅理:在一个由正电阻及独立电源组成而不含纯电压源回路及纯电流源割集的电路中,如使所有的电源为零值,则电路中所有的电压及电流均必为零。
- 线性电阻电路解答的存在性与惟一性定理:由正电阻及独立源组成且不含纯电压源回路及纯电流源割集的电流,其解答存在且惟一。
- 线性电阻电路方程组有惟一解的充要条件是其系数行列式不为0。
- 由辅理可知,线性电阻电路方程对应的齐次方程只有零解,所以系数行列式不为0。
- 若电路含负电阻或受控源,其解答未必惟一,而且有可能无解。
- 若电路含有纯电压源回路和纯电流源割集,但回路中各电压源的电压不违背KVL,割集中的各电流源的电流不违背KCL,则解答有无穷多解的。
- 若电路含有纯电压源回路和纯电流源割集,但回路中各电压源的电压违背KVL,则解答无解。