【高等数学】第一章 函数与极限——第八节 函数的连续性与间断点

本文详细探讨了数学中函数的连续性和间断点的概念。首先介绍了函数连续性的定义,包括标准定义和简化定义,以及左连续和右连续的特性。接着,讨论了函数间断点的种类,如无穷间断点、振荡间断点、可去间断点和跳跃间断点,并通过具体例子加以说明。最后,对间断点进行了分类,区分了第一类和第二类间断点的特点。
摘要由CSDN通过智能技术生成

1. 函数的连续性

  • 设变量 u u u从它的一个初值 u 1 u_1 u1变到终值 u 2 u_2 u2,终值和初值的差 u 2 − u 1 u_2-u_1 u2u1就叫做变量 u u u增量,记作 Δ u \Delta u Δu,即 Δ u = u 2 − u 1 \Delta u=u_2-u_1 Δu=u2u1
  • 函数连续性定义
    设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某一邻域内有定义
    如果 lim ⁡ Δ x → 0 Δ y = lim ⁡ Δ x → 0 [ f ( x 0 + Δ x ) − f ( x 0 ) ] = 0 \lim_{\Delta x\rightarrow 0}\Delta y=\lim_{\Delta x\rightarrow 0}[f(x_0+\Delta x)-f(x_0)]=0 Δx0limΔy=Δx0lim[f(x0+Δx)f(x0)]=0
    那么就称函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0连续
    • 函数连续性简化定义
      设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某一邻域内有定义
      如果 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) , \lim_{x\rightarrow x_0}f(x)=f(x_0), xx0limf(x)=f(x0),
      那么就称函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0连续
    • 左连续及右连续
      如果 f ( x 0 − ) = lim ⁡ x → x 0 − f ( x ) = f ( x 0 ) f(x_0^-)=\lim_{x\rightarrow x_0^-}f(x)=f(x_0) f(x0)=xx0limf(x)=f(x0)
      那么就说函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0左连续
      如果 f ( x 0 + ) = lim ⁡ x → x 0 + f ( x ) = f ( x 0 ) f(x_0^+)=\lim_{x\rightarrow x_0^+}f(x)=f(x_0) f(x0+)=xx0+limf(x)=f(x0)
      那么就说函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0右连续
    • 在区间上的连续函数
      在区间上每一点都连续的函数,叫做在该区间上的连续函数,如果区间包括端点,那么函数在右端点连续是指左连续,在左端点连续是指右连续
    • 连续函数的图形是一条连续而不间断的曲线

补充常识:和差化积与积化和差公式

  • sin ⁡ α cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] \sin \alpha \cos \beta=\dfrac{1}{2}[\sin(\alpha+\beta)+\sin(\alpha-\beta)] sinαcosβ=21[sin(α+β)+sin(αβ)]
  • cos ⁡ α sin ⁡ β = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] \cos \alpha \sin \beta=\dfrac{1}{2}[\sin(\alpha+\beta)-\sin(\alpha-\beta)] cosαsinβ=21[sin(α+β)sin(αβ)]
  • cos ⁡ α cos ⁡ β = 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] \cos \alpha \cos \beta=\dfrac{1}{2}[\cos(\alpha+\beta)+\cos(\alpha-\beta)] cosαcosβ=21[cos(α+β)+cos(αβ)]
  • sin ⁡ α sin ⁡ β = − 1 2 [ cos ⁡ ( α + β ) − cos ⁡ ( α − β ) ] \sin \alpha \sin \beta=-\dfrac{1}{2}[\cos(\alpha+\beta)-\cos(\alpha-\beta)] sinαsinβ=21[cos(α+β)cos(αβ)]
  • sin ⁡ α + sin ⁡ β = 2 sin ⁡ α + β 2 cos ⁡ α − β 2 \sin \alpha+\sin \beta=2\sin \dfrac{\alpha+\beta}{2}\cos \dfrac{\alpha-\beta}{2} sinα+sinβ=2sin2α+βcos2αβ
  • sin ⁡ α − sin ⁡ β = 2 cos ⁡ α + β 2 sin ⁡ α − β 2 \sin \alpha-\sin \beta=2\cos \dfrac{\alpha+\beta}{2}\sin \dfrac{\alpha-\beta}{2} sinαsinβ=2cos2α+βsin2αβ
  • cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 \cos \alpha+\cos \beta=2\cos \dfrac{\alpha+\beta}{2}\cos \dfrac{\alpha-\beta}{2} cosα+cosβ=2cos2α+βcos2αβ
  • cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 \cos \alpha-\cos \beta=-2\sin \dfrac{\alpha+\beta}{2}\sin\dfrac{\alpha-\beta}{2} cosαcosβ=2sin2α+βsin2αβ
  • tan ⁡ α ± tan ⁡ β = sin ⁡ ( α ± β ) cos ⁡ α ⋅ cos ⁡ β \tan \alpha \pm \tan \beta=\dfrac{\sin(\alpha \pm \beta)}{\cos \alpha \cdot \cos \beta} tanα±tanβ=cosαcosβsin(α±β)
  • cot ⁡ α ± cot ⁡ β = ± sin ⁡ ( α ± β ) sin ⁡ α ⋅ sin ⁡ β \cot \alpha \pm \cot \beta=\pm \dfrac{\sin(\alpha \pm \beta)}{\sin \alpha \cdot \sin \beta} cotα±cotβ=±sinαsinβsin(α±β)

2. 函数的间断点

2.1. 函数间断点的定义

设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某去心邻域内有定义
如果函数 f ( x ) f(x) f(x)有下列三种情形之一:
(1)在 x = x 0 x=x_0 x=x0没有定义;
(2)虽在 x = x 0 x=x_0 x=x0有定义,但 lim ⁡ x → x 0 f ( x ) \lim_{x\rightarrow x_0} f(x) xx0limf(x)不存在;
(3)虽在 x = x 0 x=x_0 x=x0有定义,且 lim ⁡ x → x 0 f ( x ) \lim_{x\rightarrow x_0} f(x) xx0limf(x)存在,但 lim ⁡ x → x 0 f ( x ) ≠ f ( x 0 ) \lim_{x\rightarrow x_0} f(x)\ne f(x_0) xx0limf(x)=f(x0)
那么函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0为不连续,而点 x 0 x_0 x0称为函数 f ( x ) f(x) f(x)不连续点或间断点

2.2. 函数间断点的类型

  • 无穷间断点
    • 特征——在该间断点的极限为无穷大
    • 举例—— x = π 2 x=\dfrac{\pi}{2} x=2π为函数 tan ⁡ x \tan x tanx的无穷间断点
  • 振荡间断点
    • 特征——趋近于该间断点,函数值反复变动
    • 举例—— x = 0 x=0 x=0为函数 sin ⁡ 1 x \sin \dfrac{1}{x} sinx1的振荡间断点
  • 可去间断点
    • 特征——函数在该间断点没有定义,但极限存在且等于函数值,可以补充定义使其连续
    • 举例—— x = 1 x=1 x=1是函数 y = x 2 − 1 x − 1 y=\dfrac{x^2-1}{x-1} y=x1x21的可去间断点
  • 跳跃间断点
    • 特征——间断点的左右极限存在但不相等,从而在该点处产生跳跃现象
    • 举例—— x = 0 x=0 x=0是函数 f ( x ) = { x − 1 , x < 0 0 , x = 0 x + 1 , x > 0 f(x)=\begin{cases}x-1,x<0\\0,x=0\\x+1,x>0\end{cases} f(x)= x1,x<00,x=0x+1,x>0的跳跃间断点

2.3. 函数间断点的分类

  • 第一类间断点
    如果 x 0 x_0 x0是函数 f ( x ) f(x) f(x)的间断点,但左右极限都存在
    那么 x 0 x_0 x0称为函数 f ( x ) f(x) f(x)的第一类间断点
    • 左右极限相等称为可去间断点
    • 左右极限不等称为跳跃间断点
  • 第二类间断点
    不是第一类间断点的任何间断点
    • 无穷间断点
    • 振荡间断点
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值